1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
|
/*!
* \file
* \brief Implementation of classes for random number generators
* \author Tony Ottosson and Adam Piatyszek
*
* -------------------------------------------------------------------------
*
* IT++ - C++ library of mathematical, signal processing, speech processing,
* and communications classes and functions
*
* Copyright (C) 1995-2008 (see AUTHORS file for a list of contributors)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* -------------------------------------------------------------------------
*/
#include <itpp/base/random.h>
#include <itpp/base/math/elem_math.h>
#include <limits>
namespace itpp {
///////////////////////////////////////////////
// Random_Generator
///////////////////////////////////////////////
bool Random_Generator::initialized = false;
int Random_Generator::left = 0;
unsigned int Random_Generator::state[624];
unsigned int *Random_Generator::pNext;
unsigned int Random_Generator::hash( time_t t, clock_t c )
{
// Get a unsigned int from t and c
// Better than uint(x) in case x is floating point in [0,1]
// Based on code by Lawrence Kirby (fred@genesis.demon.co.uk)
static unsigned int differ = 0; // guarantee time-based seeds will change
unsigned int h1 = 0;
unsigned char *p = (unsigned char *) &t;
for( size_t i = 0; i < sizeof(t); ++i )
{
h1 *= std::numeric_limits<unsigned char>::max() + 2U;
h1 += p[i];
}
unsigned int h2 = 0;
p = (unsigned char *) &c;
for( size_t j = 0; j < sizeof(c); ++j )
{
h2 *= std::numeric_limits<unsigned char>::max() + 2U;
h2 += p[j];
}
return ( h1 + differ++ ) ^ h2;
}
void Random_Generator::get_state(ivec &out_state)
{
out_state.set_size(625, false);
for (int i=0; i<624; i++)
out_state(i) = state[i];
out_state(624) = left; // the number of elements left in state before reload
}
void Random_Generator::set_state(ivec &new_state)
{
it_assert(new_state.size()==625, "Random_Generator::set_state(): Not a valid state vector");
for (int i=0; i<624; i++)
state[i] = new_state(i);
left = new_state(624);
pNext = &state[624-left];
}
// Set the seed of the Global Random Number Generator
void RNG_reset(unsigned int seed)
{
Random_Generator RNG;
RNG.reset(seed);
}
// Set the seed of the Global Random Number Generator to the same as last time
void RNG_reset()
{
Random_Generator RNG;
RNG.reset();
}
// Set a random seed for the Global Random Number Generator
void RNG_randomize()
{
Random_Generator RNG;
RNG.randomize();
}
// Save current full state of generator in memory
void RNG_get_state(ivec &state)
{
Random_Generator RNG;
RNG.get_state(state);
}
// Resume the state saved in memory
void RNG_set_state(ivec &state)
{
Random_Generator RNG;
RNG.set_state(state);
}
///////////////////////////////////////////////
// I_Uniform_RNG
///////////////////////////////////////////////
I_Uniform_RNG::I_Uniform_RNG(int min, int max)
{
setup(min, max);
}
void I_Uniform_RNG::setup(int min, int max)
{
if (min <= max) {
lo = min;
hi = max;
}
else {
lo = max;
hi = min;
}
}
void I_Uniform_RNG::get_setup(int &min, int &max) const
{
min = lo;
max = hi;
}
ivec I_Uniform_RNG::operator()(int n)
{
ivec vv(n);
for (int i=0; i<n; i++)
vv(i) = sample();
return vv;
}
imat I_Uniform_RNG::operator()(int h, int w)
{
imat mm(h,w);
int i,j;
for (i=0; i<h; i++)
for (j=0; j<w; j++)
mm(i,j) = sample();
return mm;
}
///////////////////////////////////////////////
// Uniform_RNG
///////////////////////////////////////////////
Uniform_RNG::Uniform_RNG(double min, double max)
{
setup(min, max);
}
void Uniform_RNG::setup(double min, double max)
{
if (min <= max) {
lo_bound = min;
hi_bound = max;
}
else {
lo_bound = max;
hi_bound = min;
}
}
void Uniform_RNG::get_setup(double &min, double &max) const
{
min = lo_bound;
max = hi_bound;
}
///////////////////////////////////////////////
// Exp_RNG
///////////////////////////////////////////////
Exponential_RNG::Exponential_RNG(double lambda)
{
setup(lambda);
}
vec Exponential_RNG::operator()(int n)
{
vec vv(n);
for (int i=0; i<n; i++)
vv(i) = sample();
return vv;
}
mat Exponential_RNG::operator()(int h, int w)
{
mat mm(h,w);
int i,j;
for (i=0; i<h; i++)
for (j=0; j<w; j++)
mm(i,j) = sample();
return mm;
}
///////////////////////////////////////////////
// Normal_RNG
///////////////////////////////////////////////
void Normal_RNG::get_setup(double &meanval, double &variance) const
{
meanval = mean;
variance = sigma*sigma;
}
// (Ziggurat) tabulated values for the heigt of the Ziggurat levels
const double Normal_RNG::ytab[128] = {
1, 0.963598623011, 0.936280813353, 0.913041104253,
0.892278506696, 0.873239356919, 0.855496407634, 0.838778928349,
0.822902083699, 0.807732738234, 0.793171045519, 0.779139726505,
0.765577436082, 0.752434456248, 0.739669787677, 0.727249120285,
0.715143377413, 0.703327646455, 0.691780377035, 0.68048276891,
0.669418297233, 0.65857233912, 0.647931876189, 0.637485254896,
0.62722199145, 0.617132611532, 0.607208517467, 0.597441877296,
0.587825531465, 0.578352913803, 0.569017984198, 0.559815170911,
0.550739320877, 0.541785656682, 0.532949739145, 0.524227434628,
0.515614886373, 0.507108489253, 0.498704867478, 0.490400854812,
0.482193476986, 0.47407993601, 0.466057596125, 0.458123971214,
0.450276713467, 0.442513603171, 0.434832539473, 0.427231532022,
0.419708693379, 0.41226223212, 0.404890446548, 0.397591718955,
0.390364510382, 0.383207355816, 0.376118859788, 0.369097692334,
0.362142585282, 0.355252328834, 0.348425768415, 0.341661801776,
0.334959376311, 0.328317486588, 0.321735172063, 0.31521151497,
0.308745638367, 0.302336704338, 0.29598391232, 0.289686497571,
0.283443729739, 0.27725491156, 0.271119377649, 0.265036493387,
0.259005653912, 0.253026283183, 0.247097833139, 0.241219782932,
0.235391638239, 0.229612930649, 0.223883217122, 0.218202079518,
0.212569124201, 0.206983981709, 0.201446306496, 0.195955776745,
0.190512094256, 0.185114984406, 0.179764196185, 0.174459502324,
0.169200699492, 0.1639876086, 0.158820075195, 0.153697969964,
0.148621189348, 0.143589656295, 0.138603321143, 0.133662162669,
0.128766189309, 0.123915440582, 0.119109988745, 0.114349940703,
0.10963544023, 0.104966670533, 0.100343857232, 0.0957672718266,
0.0912372357329, 0.0867541250127, 0.082318375932, 0.0779304915295,
0.0735910494266, 0.0693007111742, 0.065060233529, 0.0608704821745,
0.056732448584, 0.05264727098, 0.0486162607163, 0.0446409359769,
0.0407230655415, 0.0368647267386, 0.0330683839378, 0.0293369977411,
0.0256741818288, 0.0220844372634, 0.0185735200577, 0.0151490552854,
0.0118216532614, 0.00860719483079, 0.00553245272614, 0.00265435214565
};
/*
* (Ziggurat) tabulated values for 2^24 times x[i]/x[i+1], used to accept
* for U*x[i+1]<=x[i] without any floating point operations
*/
const unsigned int Normal_RNG::ktab[128] = {
0, 12590644, 14272653, 14988939,
15384584, 15635009, 15807561, 15933577,
16029594, 16105155, 16166147, 16216399,
16258508, 16294295, 16325078, 16351831,
16375291, 16396026, 16414479, 16431002,
16445880, 16459343, 16471578, 16482744,
16492970, 16502368, 16511031, 16519039,
16526459, 16533352, 16539769, 16545755,
16551348, 16556584, 16561493, 16566101,
16570433, 16574511, 16578353, 16581977,
16585398, 16588629, 16591685, 16594575,
16597311, 16599901, 16602354, 16604679,
16606881, 16608968, 16610945, 16612818,
16614592, 16616272, 16617861, 16619363,
16620782, 16622121, 16623383, 16624570,
16625685, 16626730, 16627708, 16628619,
16629465, 16630248, 16630969, 16631628,
16632228, 16632768, 16633248, 16633671,
16634034, 16634340, 16634586, 16634774,
16634903, 16634972, 16634980, 16634926,
16634810, 16634628, 16634381, 16634066,
16633680, 16633222, 16632688, 16632075,
16631380, 16630598, 16629726, 16628757,
16627686, 16626507, 16625212, 16623794,
16622243, 16620548, 16618698, 16616679,
16614476, 16612071, 16609444, 16606571,
16603425, 16599973, 16596178, 16591995,
16587369, 16582237, 16576520, 16570120,
16562917, 16554758, 16545450, 16534739,
16522287, 16507638, 16490152, 16468907,
16442518, 16408804, 16364095, 16301683,
16207738, 16047994, 15704248, 15472926
};
// (Ziggurat) tabulated values of 2^{-24}*x[i]
const double Normal_RNG::wtab[128] = {
1.62318314817e-08, 2.16291505214e-08, 2.54246305087e-08, 2.84579525938e-08,
3.10340022482e-08, 3.33011726243e-08, 3.53439060345e-08, 3.72152672658e-08,
3.8950989572e-08, 4.05763964764e-08, 4.21101548915e-08, 4.35664624904e-08,
4.49563968336e-08, 4.62887864029e-08, 4.75707945735e-08, 4.88083237257e-08,
5.00063025384e-08, 5.11688950428e-08, 5.22996558616e-08, 5.34016475624e-08,
5.44775307871e-08, 5.55296344581e-08, 5.65600111659e-08, 5.75704813695e-08,
5.85626690412e-08, 5.95380306862e-08, 6.04978791776e-08, 6.14434034901e-08,
6.23756851626e-08, 6.32957121259e-08, 6.42043903937e-08, 6.51025540077e-08,
6.59909735447e-08, 6.68703634341e-08, 6.77413882848e-08, 6.8604668381e-08,
6.94607844804e-08, 7.03102820203e-08, 7.11536748229e-08, 7.1991448372e-08,
7.2824062723e-08, 7.36519550992e-08, 7.44755422158e-08, 7.52952223703e-08,
7.61113773308e-08, 7.69243740467e-08, 7.77345662086e-08, 7.85422956743e-08,
7.93478937793e-08, 8.01516825471e-08, 8.09539758128e-08, 8.17550802699e-08,
8.25552964535e-08, 8.33549196661e-08, 8.41542408569e-08, 8.49535474601e-08,
8.57531242006e-08, 8.65532538723e-08, 8.73542180955e-08, 8.8156298059e-08,
8.89597752521e-08, 8.97649321908e-08, 9.05720531451e-08, 9.138142487e-08,
9.21933373471e-08, 9.30080845407e-08, 9.38259651738e-08, 9.46472835298e-08,
9.54723502847e-08, 9.63014833769e-08, 9.71350089201e-08, 9.79732621669e-08,
9.88165885297e-08, 9.96653446693e-08, 1.00519899658e-07, 1.0138063623e-07,
1.02247952126e-07, 1.03122261554e-07, 1.04003996769e-07, 1.04893609795e-07,
1.05791574313e-07, 1.06698387725e-07, 1.07614573423e-07, 1.08540683296e-07,
1.09477300508e-07, 1.1042504257e-07, 1.11384564771e-07, 1.12356564007e-07,
1.13341783071e-07, 1.14341015475e-07, 1.15355110887e-07, 1.16384981291e-07,
1.17431607977e-07, 1.18496049514e-07, 1.19579450872e-07, 1.20683053909e-07,
1.21808209468e-07, 1.2295639141e-07, 1.24129212952e-07, 1.25328445797e-07,
1.26556042658e-07, 1.27814163916e-07, 1.29105209375e-07, 1.30431856341e-07,
1.31797105598e-07, 1.3320433736e-07, 1.34657379914e-07, 1.36160594606e-07,
1.37718982103e-07, 1.39338316679e-07, 1.41025317971e-07, 1.42787873535e-07,
1.44635331499e-07, 1.4657889173e-07, 1.48632138436e-07, 1.50811780719e-07,
1.53138707402e-07, 1.55639532047e-07, 1.58348931426e-07, 1.61313325908e-07,
1.64596952856e-07, 1.68292495203e-07, 1.72541128694e-07, 1.77574279496e-07,
1.83813550477e-07, 1.92166040885e-07, 2.05295471952e-07, 2.22600839893e-07
};
// (Ziggurat) position of right-most step
const double Normal_RNG::PARAM_R = 3.44428647676;
// Get a Normal distributed (0,1) sample
double Normal_RNG::sample()
{
unsigned int u, sign, i, j;
double x, y;
while(true) {
u = RNG.random_int();
sign = u & 0x80; // 1 bit for the sign
i = u & 0x7f; // 7 bits to choose the step
j = u >> 8; // 24 bits for the x-value
x = j * wtab[i];
if (j < ktab[i])
break;
if (i < 127) {
y = ytab[i+1] + (ytab[i] - ytab[i+1]) * RNG.random_01();
}
else {
x = PARAM_R - std::log(1.0 - RNG.random_01()) / PARAM_R;
y = std::exp(-PARAM_R * (x - 0.5 * PARAM_R)) * RNG.random_01();
}
if (y < std::exp(-0.5 * x * x))
break;
}
return sign ? x : -x;
}
///////////////////////////////////////////////
// Laplace_RNG
///////////////////////////////////////////////
Laplace_RNG::Laplace_RNG(double meanval, double variance)
{
setup(meanval, variance);
}
void Laplace_RNG::setup(double meanval, double variance)
{
mean = meanval;
var = variance;
sqrt_12var = std::sqrt(variance / 2.0);
}
void Laplace_RNG::get_setup(double &meanval, double &variance) const
{
meanval = mean;
variance = var;
}
vec Laplace_RNG::operator()(int n)
{
vec vv(n);
for (int i=0; i<n; i++)
vv(i) = sample();
return vv;
}
mat Laplace_RNG::operator()(int h, int w)
{
mat mm(h,w);
int i,j;
for (i=0; i<h; i++)
for (j=0; j<w; j++)
mm(i,j) = sample();
return mm;
}
///////////////////////////////////////////////
// AR1_Normal_RNG
///////////////////////////////////////////////
AR1_Normal_RNG::AR1_Normal_RNG(double meanval, double variance, double rho)
{
setup(meanval, variance, rho);
}
void AR1_Normal_RNG::setup(double meanval, double variance, double rho)
{
mean = meanval;
var = variance;
r = rho;
factr = -2.0 * var * (1.0 - rho*rho);
mem = 0.0;
odd = true;
}
void AR1_Normal_RNG::get_setup(double &meanval, double &variance,
double &rho) const
{
meanval = mean;
variance = var;
rho = r;
}
vec AR1_Normal_RNG::operator()(int n)
{
vec vv(n);
for (int i=0; i<n; i++)
vv(i) = sample();
return vv;
}
mat AR1_Normal_RNG::operator()(int h, int w)
{
mat mm(h,w);
int i,j;
for (i=0; i<h; i++)
for (j=0; j<w; j++)
mm(i,j) = sample();
return mm;
}
void AR1_Normal_RNG::reset()
{
mem = 0.0;
}
///////////////////////////////////////////////
// Weibull_RNG
///////////////////////////////////////////////
Weibull_RNG::Weibull_RNG(double lambda, double beta)
{
setup(lambda, beta);
}
void Weibull_RNG::setup(double lambda, double beta)
{
l=lambda;
b=beta;
mean = tgamma(1.0 + 1.0 / b) / l;
var = tgamma(1.0 + 2.0 / b) / (l*l) - mean;
}
vec Weibull_RNG::operator()(int n)
{
vec vv(n);
for (int i=0; i<n; i++)
vv(i) = sample();
return vv;
}
mat Weibull_RNG::operator()(int h, int w)
{
mat mm(h,w);
int i,j;
for (i=0; i<h; i++)
for (j=0; j<w; j++)
mm(i,j) = sample();
return mm;
}
///////////////////////////////////////////////
// Rayleigh_RNG
///////////////////////////////////////////////
Rayleigh_RNG::Rayleigh_RNG(double sigma)
{
setup(sigma);
}
vec Rayleigh_RNG::operator()(int n)
{
vec vv(n);
for (int i=0; i<n; i++)
vv(i) = sample();
return vv;
}
mat Rayleigh_RNG::operator()(int h, int w)
{
mat mm(h,w);
int i,j;
for (i=0; i<h; i++)
for (j=0; j<w; j++)
mm(i,j) = sample();
return mm;
}
///////////////////////////////////////////////
// Rice_RNG
///////////////////////////////////////////////
Rice_RNG::Rice_RNG(double lambda, double beta)
{
setup(lambda, beta);
}
vec Rice_RNG::operator()(int n)
{
vec vv(n);
for (int i=0; i<n; i++)
vv(i) = sample();
return vv;
}
mat Rice_RNG::operator()(int h, int w)
{
mat mm(h,w);
int i,j;
for (i=0; i<h; i++)
for (j=0; j<w; j++)
mm(i,j) = sample();
return mm;
}
} // namespace itpp
|