File: specmat.cpp

package info (click to toggle)
libitpp 4.0.4-2
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 7,520 kB
  • ctags: 6,341
  • sloc: cpp: 51,608; sh: 9,248; makefile: 636; fortran: 8
file content (436 lines) | stat: -rw-r--r-- 9,844 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
/*!
 * \file
 * \brief Implementation of special vectors and matrices
 * \author Tony Ottosson, Tobias Ringstrom, Pal Frenger, Adam Piatyszek and Erik G. Larsson
 *
 * -------------------------------------------------------------------------
 *
 * IT++ - C++ library of mathematical, signal processing, speech processing,
 *        and communications classes and functions
 *
 * Copyright (C) 1995-2008  (see AUTHORS file for a list of contributors)
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 *
 * -------------------------------------------------------------------------
 */

#include <itpp/base/specmat.h>
#include <itpp/base/math/elem_math.h>
#include <itpp/base/math/log_exp.h>
#include <itpp/base/matfunc.h>


namespace itpp {

  ivec find(const bvec &invector)
  {
    it_assert(invector.size()>0,"find(): vector cannot be empty");
    ivec temp(invector.size());
    int pos=0;
    for (int i=0;i<invector.size();i++) {
      if (invector(i)==bin(1)) {
	temp(pos)=i;pos++;
      }
    }
    temp.set_size(pos, true);
    return temp;
  }

//! \cond

#define CREATE_SET_FUNS(typef,typem,name,value)	\
  typef name(int size)				\
  {						\
    typef t(size);				\
    t = value;					\
    return t;					\
  }						\
						\
    typem name(int rows, int cols)		\
    {						\
      typem t(rows, cols);			\
      t = value;				\
      return t;					\
    }

#define CREATE_EYE_FUN(type,name,zero,one)	\
  type name(int size) {				\
    type t(size,size);				\
    t = zero;					\
    for (int i=0; i<size; i++)			\
      t(i,i) = one;				\
    return t;					\
  }

  CREATE_SET_FUNS(vec, mat, ones, 1.0)
  CREATE_SET_FUNS(bvec, bmat, ones_b, bin(1))
  CREATE_SET_FUNS(ivec, imat, ones_i, 1)
  CREATE_SET_FUNS(cvec, cmat, ones_c, std::complex<double>(1.0))

  CREATE_SET_FUNS(vec, mat, zeros, 0.0)
  CREATE_SET_FUNS(bvec, bmat, zeros_b, bin(0))
  CREATE_SET_FUNS(ivec, imat, zeros_i, 0)
  CREATE_SET_FUNS(cvec, cmat, zeros_c, std::complex<double>(0.0))

  CREATE_EYE_FUN(mat, eye, 0.0, 1.0)
  CREATE_EYE_FUN(bmat, eye_b, bin(0), bin(1))
  CREATE_EYE_FUN(imat, eye_i, 0, 1)
  CREATE_EYE_FUN(cmat, eye_c, std::complex<double>(0.0), std::complex<double>(1.0))

  template <class T>
  void eye(int size, Mat<T> &m)
  {
    m.set_size(size, size, false);
    m = T(0);
    for (int i=size-1; i>=0; i--)
      m(i,i) = T(1);
  }

//! \endcond

  vec impulse(int size) {
    vec	t(size);
    t.clear();
    t[0]=1.0;
    return t;
  }

  vec linspace(double from, double to, int points) {
    if (points<2){
      // This is the "Matlab definition" of linspace
      vec output(1);
      output(0)=to;
      return output;
    }
    else{
      vec	output(points);
      double step = (to - from) / double(points-1);
      int	i;
      for (i=0; i<points; i++)
	output(i) = from + i*step;
      return output;
    }
  }

  vec zigzag_space(double t0, double t1, int K)
  {
    it_assert(K>0,"zigzag_space:() K must be positive");
    ivec N="0 1";

    int n=2;
    for (int k=0; k<K; k++) {
      ivec Nn=2*N;
      for (int i=1; i<length(Nn); i+=2)  {
	Nn=concat(Nn,i);
	n++;
      }
      N=Nn;
    }

    vec T0=linspace(t0,t1,n);
    vec Tt=zeros(n);
    for (int i=0; i<n; i++) {
      Tt(i)=T0(N(i));
    }
    return Tt;
  }

  // Construct a Hadamard-imat of size "size"
  imat hadamard(int size) {
    it_assert(size > 0, "hadamard(): size is not a power of 2");
    int logsize = ceil_i(::log2(static_cast<double>(size)));
    it_assert(pow2i(logsize) == size, "hadamard(): size is not a power of 2");

    imat H(size, size); H(0,0) = 1;

    for (int i = 0; i < logsize; ++i) {
      int pow2 = 1 << i;
      for (int k = 0; k < pow2; ++k) {
	for (int l = 0; l < pow2; ++l) {
	  H(k, l) = H(k, l);
	  H(k+pow2, l) = H(k, l);
	  H(k, l+pow2) = H(k, l);
	  H(k+pow2, l+pow2) = (-1) * H(k, l);
	}
      }
    }
    return H;
  }

  imat jacobsthal(int p)
  {
    int quadratic_residue;
    imat out(p,p);
    int i, j;

    out = -1; // start with all elements equal to "-1"

    // Generate a complete list of quadratic residues
    for (i=0; i<(p-1)/2; i++) {
      quadratic_residue=((i+1)*(i+1))%p;
      // set this element in all rows (col-row) = quadratic_residue
      for (j=0; j<p; j++) {
	out(j, (j+quadratic_residue)%p)=1;
      }
    }

    // set diagonal elements to zero
    for (i=0; i<p; i++) {
      out(i,i)=0;
    }
    return out;
  }

  imat conference(int n)
  {
    it_assert_debug(n%4 == 2, "conference(int n); wrong size");
    int pm=n-1; // p must be odd prime, not checked
    imat out(n,n);

    out.set_submatrix(1,n-1,1,n-1, jacobsthal(pm));
    out.set_submatrix(0,0,1,n-1, 1);
    out.set_submatrix(1,n-1,0,0, 1);
    out(0,0)=0;

    return out;
  }

  cmat toeplitz(const cvec &c, const cvec &r) {
    int size = c.size();
    it_assert(size == r.size(),
	      "toeplitz(): Incorrect sizes of input vectors.");
    cmat output(size, size);
    cvec c_conj = conj(c);
    c_conj[0] = conj(c_conj[0]);

    for (int i = 0; i < size; i++) {
      cmat tmp = reshape(c_conj(0, size - 1 - i), size - i, 1);
      output.set_submatrix(i, size - 1, i, i, tmp);
    }
    for (int i = 0; i < size - 1; i++) {
      cmat tmp = reshape(r(1, size - 1 - i), 1, size - 1 - i);
      output.set_submatrix(i, i, i + 1, size - 1, tmp);
    }

    return output;
  }

  cmat toeplitz(const cvec &c) {
    int size = c.size();
    cmat output(size, size);
    cvec c_conj = conj(c);
    c_conj[0] = conj(c_conj[0]);

    for (int i = 0; i < size; i++) {
      cmat tmp = reshape(c_conj(0, size - 1 - i), size - i, 1);
      output.set_submatrix(i, size - 1, i, i, tmp);
    }
    for (int i = 0; i < size - 1; i++) {
      cmat tmp = reshape(c(1, size - 1 - i), 1, size - 1 - i);
      output.set_submatrix(i, i, i + 1, size - 1, tmp);
    }

    return output;
  }

  mat toeplitz(const vec &c, const vec &r) {

    mat output(c.size(), r.size());

    for (int i=0; i<c.size(); i++) {
      for(int j=0; j<std::min(r.size(), c.size()-i); j++)
	output(i+j,j) = c(i);
    }

    for (int j=1; j<r.size(); j++) {
      for(int i=0; i<std::min(c.size(), r.size()-j); i++)
	output(i,i+j) = r(j);
    }

    return output;
  }

  mat toeplitz(const vec &c) {
    mat output(c.size(), c.size());

    for (int i=0; i<c.size(); i++) {
      for(int j=0; j<c.size()-i; j++)
	output(i+j,j) = c(i);
    }

    for (int j=1; j<c.size(); j++) {
      for(int i=0; i<c.size()-j; i++)
	output(i,i+j) = c(j);
    }

    return output;
  }

  mat rotation_matrix(int dim, int plane1, int plane2, double angle)
  {
    mat m;
    double c = std::cos(angle), s = std::sin(angle);

    it_assert(plane1>=0 && plane2>=0 &&
	      plane1<dim && plane2<dim && plane1!=plane2,
	      "Invalid arguments to rotation_matrix()");

    m.set_size(dim, dim, false);
    m = 0.0;
    for (int i=0; i<dim; i++)
      m(i,i) = 1.0;

    m(plane1, plane1) = c;
    m(plane1, plane2) = -s;
    m(plane2, plane1) = s;
    m(plane2, plane2) = c;

    return m;
  }

  void house(const vec &x, vec &v, double &beta)
  {
    double sigma, mu;
    int n = x.size();

    v = x;
    if (n == 1) {
      v(0) = 1.0;
      beta = 0.0;
      return;
    }
    sigma = sum(sqr(x(1, n-1)));
    v(0) = 1.0;
    if (sigma == 0.0)
      beta = 0.0;
    else {
      mu = std::sqrt(sqr(x(0)) + sigma);
      if (x(0) <= 0.0)
	v(0) = x(0) - mu;
      else
	v(0) = -sigma / (x(0) + mu);
      beta = 2 * sqr(v(0)) / (sigma + sqr(v(0)));
      v /= v(0);
    }
  }

  void givens(double a, double b, double &c, double &s)
  {
    double t;

    if (b == 0) {
      c = 1.0;
      s = 0.0;
    }
    else {
      if (fabs(b) > fabs(a)) {
	t = -a/b;
	s = -1.0 / std::sqrt(1 + t*t);
	c = s * t;
      }
      else {
	t = -b/a;
	c = 1.0 / std::sqrt(1 + t*t);
	s = c * t;
      }
    }
  }

  void givens(double a, double b, mat &m)
  {
    double t, c, s;

    m.set_size(2,2);

    if (b == 0) {
      m(0,0) = 1.0;
      m(1,1) = 1.0;
      m(1,0) = 0.0;
      m(0,1) = 0.0;
    }
    else {
      if (fabs(b) > fabs(a)) {
	t = -a/b;
	s = -1.0 / std::sqrt(1 + t*t);
	c = s * t;
      }
      else {
	t = -b/a;
	c = 1.0 / std::sqrt(1 + t*t);
	s = c * t;
      }
      m(0,0) = c;
      m(1,1) = c;
      m(0,1) = s;
      m(1,0) = -s;
    }
  }

  mat givens(double a, double b)
  {
    mat m(2,2);
    givens(a, b, m);
    return m;
  }


  void givens_t(double a, double b, mat &m)
  {
    double t, c, s;

    m.set_size(2,2);

    if (b == 0) {
      m(0,0) = 1.0;
      m(1,1) = 1.0;
      m(1,0) = 0.0;
      m(0,1) = 0.0;
    }
    else {
      if (fabs(b) > fabs(a)) {
	t = -a/b;
	s = -1.0 / std::sqrt(1 + t*t);
	c = s * t;
      }
      else {
	t = -b/a;
	c = 1.0 / std::sqrt(1 + t*t);
	s = c * t;
      }
      m(0,0) = c;
      m(1,1) = c;
      m(0,1) = -s;
      m(1,0) = s;
    }
  }

  mat givens_t(double a, double b)
  {
    mat m(2,2);
    givens_t(a, b, m);
    return m;
  }

  //! Template instantiation of eye
  template void eye(int, mat &);
  //! Template instantiation of eye
  template void eye(int, bmat &);
  //! Template instantiation of eye
  template void eye(int, imat &);
  //! Template instantiation of eye
  template void eye(int, cmat &);

} // namespace itpp