1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
|
/*!
* \file
* \brief Definitions of some specific functions useful in communications
* \author Tony Ottosson and Erik G. Larsson
*
* -------------------------------------------------------------------------
*
* IT++ - C++ library of mathematical, signal processing, speech processing,
* and communications classes and functions
*
* Copyright (C) 1995-2008 (see AUTHORS file for a list of contributors)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* -------------------------------------------------------------------------
*/
#ifndef COMMFUNC_H
#define COMMFUNC_H
#include <itpp/base/mat.h>
#include <itpp/base/vec.h>
namespace itpp {
/*!
\brief Generate Gray code of blocklength m.
\ingroup misccommfunc
The codes are contained as binary codewords {0,1} in the rows of the
returned matrix.
See also the \c gray() function in \c math/scalfunc.h.
*/
bmat graycode(int m);
/*!
\brief Calculate the Hamming distance between \a a and \a b
\ingroup misccommfunc
*/
int hamming_distance(const bvec &a, const bvec &b);
/*!
\brief Calculate the Hamming weight of \a a
\ingroup misccommfunc
*/
int weight(const bvec &a);
/*!
* \brief Compute the water-filling solution
* \ingroup misccommfunc
*
* This function computes the solution of the water-filling problem
* \f[
* \max_{p_0,...,p_{n-1}} \sum_{i=0}^{n-1} \log\left(1+p_i\alpha_i\right)
* \f]
* subject to
* \f[
* \sum_{i=0}^{n-1} p_i \le P
* \f]
*
* \param alpha vector of \f$\alpha_0,...,\alpha_{n-1}\f$ gains (must have
* strictly positive elements)
* \param P power constraint
* \return vector of power allocations \f$p_0,...,p_{n-1}\f$
*
* The computational complexity of the method is \f$O(n^2)\f$ at most
*/
vec waterfilling(const vec& alpha, double P);
} // namespace itpp
#endif // #ifndef COMMFUNC_H
|