1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
|
/*!
* \file
* \brief Implementation of a binary convolutional encoder class
* \author Tony Ottosson and Adam Piatyszek
*
* -------------------------------------------------------------------------
*
* IT++ - C++ library of mathematical, signal processing, speech processing,
* and communications classes and functions
*
* Copyright (C) 1995-2008 (see AUTHORS file for a list of contributors)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* -------------------------------------------------------------------------
*/
#include <itpp/comm/convcode.h>
#include <itpp/base/binary.h>
#include <itpp/base/matfunc.h>
#include <limits>
namespace itpp {
// ----------------- Protected functions -----------------------------
/*
The weight of the transition from given state with the input given
*/
int Convolutional_Code::weight(const int state, const int input)
{
int i, j, temp, out, w = 0, shiftreg = state;
shiftreg = shiftreg | (input << m);
for (j=0; j<n; j++) {
out = 0;
temp = shiftreg & gen_pol(j);
for (i=0; i<K; i++) {
out ^= (temp & 1);
temp = temp >> 1;
}
w += out;
//w += weight_int_table(temp);
}
return w;
}
/*
The weight (of the reverse code) of the transition from given state with
the input given
*/
int Convolutional_Code::weight_reverse(const int state, const int input)
{
int i, j, temp, out, w = 0, shiftreg = state;
shiftreg = shiftreg | (input << m);
for (j=0; j<n; j++) {
out = 0;
temp = shiftreg & gen_pol_rev(j);
for (i=0; i<K; i++) {
out ^= (temp & 1);
temp = temp >> 1;
}
w += out;
//w += weight_int_table(temp);
}
return w;
}
/*
The weight of the two paths (input 0 or 1) from given state
*/
void Convolutional_Code::weight(const int state, int &w0, int &w1)
{
int i, j, temp, out, shiftreg = state;
w0 = 0; w1 = 0;
shiftreg = shiftreg | (1 << m);
for (j=0; j<n; j++) {
out = 0;
temp = shiftreg & gen_pol(j);
for (i=0; i<m; i++) {
out ^= (temp & 1);
temp = temp >> 1;
}
w0 += out;
w1 += out ^ (temp & 1);
}
}
/*
The weight (of the reverse code) of the two paths (input 0 or 1) from
given state
*/
void Convolutional_Code::weight_reverse(const int state, int &w0, int &w1)
{
int i, j, temp, out, shiftreg = state;
w0 = 0; w1 = 0;
shiftreg = shiftreg | (1 << m);
for (j=0; j<n; j++) {
out = 0;
temp = shiftreg & gen_pol_rev(j);
for (i=0; i<m; i++) {
out ^= (temp & 1);
temp = temp >> 1;
}
w0 += out;
w1 += out ^ (temp & 1);
}
}
/*
Output on transition (backwards) with input from state
*/
bvec Convolutional_Code::output_reverse(const int state, const int input)
{
int j, temp, temp_state;
bvec output(n);
temp_state = (state<<1) | input;
for (j=0; j<n; j++) {
temp = temp_state & gen_pol(j);
output(j) = xor_int_table(temp);
}
return output;
}
/*
Output on transition (backwards) with input from state
*/
void Convolutional_Code::output_reverse(const int state, bvec &zero_output,
bvec &one_output)
{
int j, temp, temp_state;
bin one_bit;
temp_state = (state<<1) | 1;
for (j=0; j<n; j++) {
temp = temp_state & gen_pol(j);
one_bit = temp & 1;
temp = temp >> 1;
one_output(j) = xor_int_table(temp) ^ one_bit;
zero_output(j) = xor_int_table(temp);
}
}
/*
Output on transition (backwards) with input from state
*/
void Convolutional_Code::output_reverse(const int state, int &zero_output,
int &one_output)
{
int j, temp, temp_state;
bin one_bit;
zero_output=0, one_output=0;
temp_state = (state<<1) | 1;
for (j=0; j<n; j++) {
temp = temp_state & gen_pol(j);
one_bit = temp & 1;
temp = temp >> 1;
one_output = (one_output<<1) | int(xor_int_table(temp) ^ one_bit);
zero_output = (zero_output<<1) | int(xor_int_table(temp));
}
}
/*
Output on transition (backwards) with input from state
*/
void Convolutional_Code::calc_metric_reverse(int state,
const vec &rx_codeword,
double &zero_metric,
double &one_metric)
{
int temp;
bin one_bit;
one_metric = zero_metric = 0;
int temp_state = (state << 1) | 1;
for (int j = 0; j < n; j++) {
temp = temp_state & gen_pol(j);
one_bit = temp & 1;
temp >>= 1;
one_metric += (2 * static_cast<int>(xor_int_table(temp) ^ one_bit) - 1)
* rx_codeword(j);
zero_metric += (2 * static_cast<int>(xor_int_table(temp)) - 1)
* rx_codeword(j);
}
}
// calculates metrics for all codewords (2^n of them) in natural order
void Convolutional_Code::calc_metric(const vec &rx_codeword,
vec &delta_metrics)
{
int no_outputs = pow2i(n), no_loop = pow2i(n - 1), mask = no_outputs - 1,
temp;
delta_metrics.set_size(no_outputs, false);
if (no_outputs <= no_states) {
for (int i = 0; i < no_loop; i++) { // all input possibilities
delta_metrics(i) = 0;
temp = i;
for (int j = n - 1; j >= 0; j--) {
if (temp & 1)
delta_metrics(i) += rx_codeword(j);
else
delta_metrics(i) -= rx_codeword(j);
temp >>= 1;
}
delta_metrics(i ^ mask) = -delta_metrics(i); // the inverse codeword
}
}
else {
double zero_metric, one_metric;
int zero_output, one_output, temp_state;
bin one_bit;
for (int s = 0; s < no_states; s++) { // all states
zero_metric = 0, one_metric = 0;
zero_output = 0, one_output = 0;
temp_state = (s << 1) | 1;
for (int j = 0; j < n; j++) {
temp = temp_state & gen_pol(j);
one_bit = temp & 1;
temp >>= 1;
if (xor_int_table(temp)) {
zero_metric += rx_codeword(j);
one_metric -= rx_codeword(j);
}
else {
zero_metric -= rx_codeword(j);
one_metric += rx_codeword(j);
}
one_output = (one_output << 1)
| static_cast<int>(xor_int_table(temp) ^ one_bit);
zero_output = (zero_output << 1)
| static_cast<int>(xor_int_table(temp));
}
delta_metrics(zero_output) = zero_metric;
delta_metrics(one_output) = one_metric;
}
}
}
//! \cond
// MFD codes R=1/2
int Conv_Code_MFD_2[15][2] = {
{0,0},
{0,0},
{0,0},
{05,07},
{015,017},
{023,035},
{053,075},
{0133,0171},
{0247,0371},
{0561,0753},
{01167,01545},
{02335,03661},
{04335,05723},
{010533,017661},
{021675,027123},
};
// MFD codes R=1/3
int Conv_Code_MFD_3[15][3] = {
{0,0,0},
{0,0,0},
{0,0,0},
{05,07,07},
{013,015,017},
{025,033,037},
{047,053,075},
{0133,0145,0175},
{0225,0331,0367},
{0557,0663,0711},
{0117,01365,01633},
{02353,02671,03175},
{04767,05723,06265},
{010533,010675,017661},
{021645,035661,037133},
};
// MFD codes R=1/4
int Conv_Code_MFD_4[15][4] = {
{0,0,0,0},
{0,0,0,0},
{0,0,0,0},
{05,07,07,07},
{013,015,015,017},
{025,027,033,037},
{053,067,071,075},
{0135,0135,0147,0163},
{0235,0275,0313,0357},
{0463,0535,0733,0745},
{0117,01365,01633,01653},
{02327,02353,02671,03175},
{04767,05723,06265,07455},
{011145,012477,015573,016727},
{021113,023175,035527,035537},
};
// MFD codes R=1/5
int Conv_Code_MFD_5[9][5] = {
{0,0,0,0,0},
{0,0,0,0,0},
{0,0,0,0,0},
{07,07,07,05,05},
{017,017,013,015,015},
{037,027,033,025,035},
{075,071,073,065,057},
{0175,0131,0135,0135,0147},
{0257,0233,0323,0271,0357},
};
// MFD codes R=1/6
int Conv_Code_MFD_6[9][6] = {
{0,0,0,0,0,0},
{0,0,0,0,0,0},
{0,0,0,0,0,0},
{07,07,07,07,05,05},
{017,017,013,013,015,015},
{037,035,027,033,025,035},
{073,075,055,065,047,057},
{0173,0151,0135,0135,0163,0137},
{0253,0375,0331,0235,0313,0357},
};
// MFD codes R=1/7
int Conv_Code_MFD_7[9][7] = {
{0,0,0,0,0,0,0},
{0,0,0,0,0,0,0},
{0,0,0,0,0,0,0},
{07,07,07,07,05,05,05},
{017,017,013,013,013,015,015},
{035,027,025,027,033,035,037},
{053,075,065,075,047,067,057},
{0165,0145,0173,0135,0135,0147,0137},
{0275,0253,0375,0331,0235,0313,0357},
};
// MFD codes R=1/8
int Conv_Code_MFD_8[9][8] = {
{0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0},
{07,07,05,05,05,07,07,07},
{017,017,013,013,013,015,015,017},
{037,033,025,025,035,033,027,037},
{057,073,051,065,075,047,067,057},
{0153,0111,0165,0173,0135,0135,0147,0137},
{0275,0275,0253,0371,0331,0235,0313,0357},
};
int maxK_Conv_Code_MFD[9] = {0,0,14,14,14,8,8,8,8};
void get_MFD_gen_pol(int n, int K, ivec & gen)
{
gen.set_size(n);
switch (n) {
case 2: // Rate 1/2
it_assert(K >= 3 && K <= maxK_Conv_Code_MFD[2], "This convolutional code doesn't exist in the tables");
gen(0) = Conv_Code_MFD_2[K][0];
gen(1) = Conv_Code_MFD_2[K][1];
break;
case 3: // Rate 1/3
it_assert(K >= 3 && K <= maxK_Conv_Code_MFD[3], "This convolutional code doesn't exist in the tables");
gen(0) = Conv_Code_MFD_3[K][0];
gen(1) = Conv_Code_MFD_3[K][1];
gen(2) = Conv_Code_MFD_3[K][2];
break;
case 4: // Rate 1/4
it_assert(K >= 3 && K <= maxK_Conv_Code_MFD[4], "This convolutional code doesn't exist in the tables");
gen(0) = Conv_Code_MFD_4[K][0];
gen(1) = Conv_Code_MFD_4[K][1];
gen(2) = Conv_Code_MFD_4[K][2];
gen(3) = Conv_Code_MFD_4[K][3];
break;
case 5: // Rate 1/5
it_assert(K >= 3 && K <= maxK_Conv_Code_MFD[5], "This convolutional code doesn't exist in the tables");
gen(0) = Conv_Code_MFD_5[K][0];
gen(1) = Conv_Code_MFD_5[K][1];
gen(2) = Conv_Code_MFD_5[K][2];
gen(3) = Conv_Code_MFD_5[K][3];
gen(4) = Conv_Code_MFD_5[K][4];
break;
case 6: // Rate 1/6
it_assert(K >= 3 && K <= maxK_Conv_Code_MFD[6], "This convolutional code doesn't exist in the tables");
gen(0) = Conv_Code_MFD_6[K][0];
gen(1) = Conv_Code_MFD_6[K][1];
gen(2) = Conv_Code_MFD_6[K][2];
gen(3) = Conv_Code_MFD_6[K][3];
gen(4) = Conv_Code_MFD_6[K][4];
gen(5) = Conv_Code_MFD_6[K][5];
break;
case 7: // Rate 1/7
it_assert(K >= 3 && K <= maxK_Conv_Code_MFD[7], "This convolutional code doesn't exist in the tables");
gen(0) = Conv_Code_MFD_7[K][0];
gen(1) = Conv_Code_MFD_7[K][1];
gen(2) = Conv_Code_MFD_7[K][2];
gen(3) = Conv_Code_MFD_7[K][3];
gen(4) = Conv_Code_MFD_7[K][4];
gen(5) = Conv_Code_MFD_7[K][5];
gen(6) = Conv_Code_MFD_7[K][6];
break;
case 8: // Rate 1/8
it_assert(K >= 3 && K <= maxK_Conv_Code_MFD[8], "This convolutional code doesn't exist in the tables");
gen(0) = Conv_Code_MFD_8[K][0];
gen(1) = Conv_Code_MFD_8[K][1];
gen(2) = Conv_Code_MFD_8[K][2];
gen(3) = Conv_Code_MFD_8[K][3];
gen(4) = Conv_Code_MFD_8[K][4];
gen(5) = Conv_Code_MFD_8[K][5];
gen(6) = Conv_Code_MFD_8[K][6];
gen(7) = Conv_Code_MFD_8[K][7];
break;
default: // wrong rate
it_assert(false, "This convolutional code doesn't exist in the tables");
}
}
// ODS codes R=1/2
int Conv_Code_ODS_2[17][2] = {
{0,0},
{0,0},
{0,0},
{05,07},
{015,017},
{023,035},
{053,075},
{0133,0171},
{0247,0371},
{0561,0753},
{01151,01753},
{03345,03613},
{05261,07173},
{012767,016461},
{027251,037363},
{063057,044735},
{0126723,0152711},
};
// ODS codes R=1/3
int Conv_Code_ODS_3[14][3] = {
{0,0,0},
{0,0,0},
{0,0,0},
{05,07,07},
{013,015,017},
{025,033,037},
{047,053,075},
{0133,0165,0171},
{0225,0331,0367},
{0575,0623,0727},
{01233,01375,01671},
{02335,02531,03477},
{05745,06471,07553},
{013261,015167,017451},
};
// ODS codes R=1/4
int Conv_Code_ODS_4[12][4] = {
{0,0,0,0},
{0,0,0,0},
{0,0,0,0},
{05,05,07,07},
{013,015,015,017},
{025,027,033,037},
{051,055,067,077},
{0117,0127,0155,0171},
{0231,0273,0327,0375},
{0473,0513,0671,0765},
{01173,01325,01467,01751},
{02565,02747,03311,03723},
};
int maxK_Conv_Code_ODS[5] = {0,0,16,13,11};
void get_ODS_gen_pol(int n, int K, ivec & gen)
{
gen.set_size(n);
switch (n) {
case 2: // Rate 1/2
it_assert(K >= 3 && K <= maxK_Conv_Code_ODS[2], "This convolutional code doesn't exist in the tables");
gen(0) = Conv_Code_ODS_2[K][0];
gen(1) = Conv_Code_ODS_2[K][1];
break;
case 3: // Rate 1/3
it_assert(K >= 3 && K <= maxK_Conv_Code_ODS[3], "This convolutional code doesn't exist in the tables");
gen(0) = Conv_Code_ODS_3[K][0];
gen(1) = Conv_Code_ODS_3[K][1];
gen(2) = Conv_Code_ODS_3[K][2];
break;
case 4: // Rate 1/4
it_assert(K >= 3 && K <= maxK_Conv_Code_ODS[4], "This convolutional code doesn't exist in the tables");
gen(0) = Conv_Code_ODS_4[K][0];
gen(1) = Conv_Code_ODS_4[K][1];
gen(2) = Conv_Code_ODS_4[K][2];
gen(3) = Conv_Code_ODS_4[K][3];
break;
default: // wrong rate
it_assert(false, "This convolutional code doesn't exist in the tables");
}
}
//! \endcond
// --------------- Public functions -------------------------
void Convolutional_Code::set_code(const CONVOLUTIONAL_CODE_TYPE type_of_code,
int inverse_rate, int constraint_length)
{
ivec gen;
if (type_of_code == MFD)
get_MFD_gen_pol(inverse_rate, constraint_length, gen);
else if (type_of_code == ODS)
get_ODS_gen_pol(inverse_rate, constraint_length, gen);
else
it_assert(false, "This convolutional code doesn't exist in the tables");
set_generator_polynomials(gen, constraint_length);
}
/*
Set generator polynomials. Given in Proakis integer form
*/
void Convolutional_Code::set_generator_polynomials(const ivec &gen,
int constraint_length)
{
it_error_if(constraint_length <= 0, "Convolutional_Code::set_generator_polynomials(): Constraint length out of range");
gen_pol = gen;
n = gen.size();
it_error_if(n <= 0, "Convolutional_Code::set_generator_polynomials(): Invalid code rate");
// Generate table look-up of weight of integers of size K bits
if (constraint_length != K) {
K = constraint_length;
xor_int_table.set_size(pow2i(K), false);
for (int i = 0; i < pow2i(K); i++) {
xor_int_table(i) = (weight_int(K, i) & 1);
}
}
trunc_length = 5 * K;
m = K - 1;
no_states = pow2i(m);
gen_pol_rev.set_size(n, false);
rate = 1.0 / n;
for (int i = 0; i < n; i++) {
gen_pol_rev(i) = reverse_int(K, gen_pol(i));
}
int zero_output, one_output;
output_reverse_int.set_size(no_states, 2, false);
for (int i = 0; i < no_states; i++) {
output_reverse(i, zero_output, one_output);
output_reverse_int(i, 0) = zero_output;
output_reverse_int(i, 1) = one_output;
}
// initialise memory structures
visited_state.set_size(no_states);
visited_state = false;
visited_state(start_state) = true; // mark start state
sum_metric.set_size(no_states);
sum_metric.clear();
trunc_ptr = 0;
trunc_state = 0;
}
// Reset encoder and decoder states
void Convolutional_Code::reset()
{
init_encoder();
visited_state = false;
visited_state(start_state) = true; // mark start state
sum_metric.clear();
trunc_ptr = 0;
trunc_state = 0;
}
/*
Encode a binary vector of inputs using specified method
*/
void Convolutional_Code::encode(const bvec &input, bvec &output)
{
switch (cc_method) {
case Trunc:
encode_trunc(input, output);
break;
case Tailbite:
encode_tailbite(input, output);
break;
case Tail:
default:
encode_tail(input, output);
break;
};
}
/*
Encode a binary vector of inputs starting from state set by the
set_state function
*/
void Convolutional_Code::encode_trunc(const bvec &input, bvec &output)
{
int temp;
output.set_size(input.size() * n, false);
for (int i = 0; i < input.size(); i++) {
encoder_state |= static_cast<int>(input(i)) << m;
for (int j = 0; j < n; j++) {
temp = encoder_state & gen_pol(j);
output(i * n + j) = xor_int_table(temp);
}
encoder_state >>= 1;
}
}
/*
Encode a binary vector of inputs starting from zero state and also adds
a tail of K-1 zeros to force the encoder into the zero state. Well
suited for packet transmission.
*/
void Convolutional_Code::encode_tail(const bvec &input, bvec &output)
{
int temp;
output.set_size((input.size() + m) * n, false);
// always start from state 0
encoder_state = 0;
for (int i = 0; i < input.size(); i++) {
encoder_state |= static_cast<int>(input(i)) << m;
for (int j = 0; j < n; j++) {
temp = encoder_state & gen_pol(j);
output(i * n + j) = xor_int_table(temp);
}
encoder_state >>= 1;
}
// add tail of m = K-1 zeros
for (int i = input.size(); i < input.size() + m; i++) {
for (int j = 0; j < n; j++) {
temp = encoder_state & gen_pol(j);
output(i * n + j) = xor_int_table(temp);
}
encoder_state >>= 1;
}
}
/*
Encode a binary vector of inputs starting using tail biting
*/
void Convolutional_Code::encode_tailbite(const bvec &input, bvec &output)
{
int temp;
output.set_size(input.size() * n, false);
// Set the start state equal to the end state:
encoder_state = 0;
bvec last_bits = input.right(m);
for (int i = 0; i < m; i++) {
encoder_state |= static_cast<int>(last_bits(i)) << m;
encoder_state >>= 1;
}
for (int i = 0; i < input.size(); i++) {
encoder_state |= static_cast<int>(input(i)) << m;
for (int j = 0; j < n; j++) {
temp = encoder_state & gen_pol(j);
output(i * n + j) = xor_int_table(temp);
}
encoder_state >>= 1;
}
}
/*
Encode a binary bit starting from the internal encoder state.
To initialize the encoder state use set_start_state() and init_encoder()
*/
void Convolutional_Code::encode_bit(const bin &input, bvec &output)
{
int temp;
output.set_size(n, false);
encoder_state |= static_cast<int>(input) << m;
for (int j = 0; j < n; j++) {
temp = encoder_state & gen_pol(j);
output(j) = xor_int_table(temp);
}
encoder_state >>= 1;
}
// --------------- Hard-decision decoding is not implemented -----------------
void Convolutional_Code::decode(const bvec &coded_bits, bvec &output)
{
it_error("Convolutional_Code::decode(): Hard-decision decoding not implemented");
}
bvec Convolutional_Code::decode(const bvec &coded_bits)
{
it_error("Convolutional_Code::decode(): Hard-decision decoding not implemented");
return bvec();
}
/*
Decode a block of encoded data using specified method
*/
void Convolutional_Code::decode(const vec &received_signal, bvec &output)
{
switch (cc_method) {
case Trunc:
decode_trunc(received_signal, output);
break;
case Tailbite:
decode_tailbite(received_signal, output);
break;
case Tail:
default:
decode_tail(received_signal, output);
break;
};
}
/*
Decode a block of encoded data where encode_tail has been used.
Thus is assumes a decoder start state of zero and that a tail of
K-1 zeros has been added. No memory truncation.
*/
void Convolutional_Code::decode_tail(const vec &received_signal, bvec &output)
{
int block_length = received_signal.size() / n; // no input symbols
it_error_if(block_length - m <= 0,
"Convolutional_Code::decode_tail(): Input sequence to short");
int S0, S1;
vec temp_sum_metric(no_states), temp_rec(n), delta_metrics;
Array<bool> temp_visited_state(no_states);
double temp_metric_zero, temp_metric_one;
path_memory.set_size(no_states, block_length, false);
output.set_size(block_length - m, false); // no tail in the output
// clear visited states
visited_state = false;
temp_visited_state = visited_state;
visited_state(0) = true; // starts in the zero state
// clear accumulated metrics
sum_metric.clear();
// evolve up to m where not all states visited
for (int l = 0; l < m; l++) { // all transitions including the tail
temp_rec = received_signal.mid(l * n, n);
// calculate all metrics for all codewords at the same time
calc_metric(temp_rec, delta_metrics);
for (int s = 0; s < no_states; s++) { // all states
// S0 and S1 are the states that expanded end at state s
previous_state(s, S0, S1);
if (visited_state(S0)) { // expand trellis if state S0 is visited
temp_metric_zero = sum_metric(S0)
+ delta_metrics(output_reverse_int(s, 0));
temp_visited_state(s) = true;
}
else {
temp_metric_zero = std::numeric_limits<double>::max();
}
if (visited_state(S1)) { // expand trellis if state S0 is visited
temp_metric_one = sum_metric(S1)
+ delta_metrics(output_reverse_int(s, 1));
temp_visited_state(s) = true;
}
else {
temp_metric_one = std::numeric_limits<double>::max();
}
if (temp_metric_zero < temp_metric_one) { // path zero survives
temp_sum_metric(s) = temp_metric_zero;
path_memory(s, l) = 0;
}
else { // path one survives
temp_sum_metric(s) = temp_metric_one;
path_memory(s, l) = 1;
}
} // all states, s
sum_metric = temp_sum_metric;
visited_state = temp_visited_state;
} // all transitions, l
// evolve from m and to the end of the block
for (int l = m; l < block_length; l++) { // all transitions except the tail
temp_rec = received_signal.mid(l * n, n);
// calculate all metrics for all codewords at the same time
calc_metric(temp_rec, delta_metrics);
for (int s = 0; s < no_states; s++) { // all states
// S0 and S1 are the states that expanded end at state s
previous_state(s, S0, S1);
temp_metric_zero = sum_metric(S0)
+ delta_metrics(output_reverse_int(s, 0));
temp_metric_one = sum_metric(S1)
+ delta_metrics(output_reverse_int(s, 1));
if (temp_metric_zero < temp_metric_one) { // path zero survives
temp_sum_metric(s) = temp_metric_zero;
path_memory(s, l) = 0;
}
else { // path one survives
temp_sum_metric(s) = temp_metric_one;
path_memory(s, l) = 1;
}
} // all states, s
sum_metric = temp_sum_metric;
} // all transitions, l
// minimum metric is the zeroth state due to the tail
int min_metric_state = 0;
// trace back to remove tail of zeros
for (int l = block_length - 1; l > block_length - 1 - m; l--) {
// previous state calculation
min_metric_state = previous_state(min_metric_state,
path_memory(min_metric_state, l));
}
// trace back to calculate output sequence
for (int l = block_length - 1 - m; l >= 0; l--) {
output(l) = get_input(min_metric_state);
// previous state calculation
min_metric_state = previous_state(min_metric_state,
path_memory(min_metric_state, l));
}
}
/*
Decode a block of encoded data where encode_tailbite has been used.
*/
void Convolutional_Code::decode_tailbite(const vec &received_signal,
bvec &output)
{
int block_length = received_signal.size() / n; // no input symbols
it_error_if(block_length <= 0,
"Convolutional_Code::decode_tailbite(): Input sequence to short");
int S0, S1;
vec temp_sum_metric(no_states), temp_rec(n), delta_metrics;
Array<bool> temp_visited_state(no_states);
double temp_metric_zero, temp_metric_one;
double best_metric = std::numeric_limits<double>::max();
bvec best_output(block_length), temp_output(block_length);
path_memory.set_size(no_states, block_length, false);
output.set_size(block_length, false);
// Try all start states ss
for (int ss = 0; ss < no_states; ss++) {
//Clear the visited_state vector:
visited_state = false;
temp_visited_state = visited_state;
visited_state(ss) = true; // starts in the state s
// clear accumulated metrics
sum_metric.zeros();
for (int l = 0; l < block_length; l++) { // all transitions
temp_rec = received_signal.mid(l * n, n);
// calculate all metrics for all codewords at the same time
calc_metric(temp_rec, delta_metrics);
for (int s = 0; s < no_states; s++) { // all states
// S0 and S1 are the states that expanded end at state s
previous_state(s, S0, S1);
if (visited_state(S0)) { // expand trellis if state S0 is visited
temp_metric_zero = sum_metric(S0)
+ delta_metrics(output_reverse_int(s, 0));
temp_visited_state(s) = true;
}
else {
temp_metric_zero = std::numeric_limits<double>::max();
}
if (visited_state(S1)) { // expand trellis if state S0 is visited
temp_metric_one = sum_metric(S1)
+ delta_metrics(output_reverse_int(s, 1));
temp_visited_state(s) = true;
}
else {
temp_metric_one = std::numeric_limits<double>::max();
}
if (temp_metric_zero < temp_metric_one) { // path zero survives
temp_sum_metric(s) = temp_metric_zero;
path_memory(s, l) = 0;
}
else { // path one survives
temp_sum_metric(s) = temp_metric_one;
path_memory(s, l) = 1;
}
} // all states, s
sum_metric = temp_sum_metric;
visited_state = temp_visited_state;
} // all transitions, l
// minimum metric is the ss state due to the tailbite
int min_metric_state = ss;
// trace back to calculate output sequence
for (int l = block_length - 1; l >= 0; l--) {
temp_output(l) = get_input(min_metric_state);
// previous state calculation
min_metric_state = previous_state(min_metric_state,
path_memory(min_metric_state, l));
}
if (sum_metric(ss) < best_metric) {
best_metric = sum_metric(ss);
best_output = temp_output;
}
} // all start states ss
output = best_output;
}
/*
Viterbi decoding using truncation of memory (default = 5*K)
*/
void Convolutional_Code::decode_trunc(const vec &received_signal,
bvec &output)
{
int block_length = received_signal.size() / n; // no input symbols
it_error_if(block_length <= 0,
"Convolutional_Code::decode_trunc(): Input sequence to short");
int S0, S1;
vec temp_sum_metric(no_states), temp_rec(n), delta_metrics;
Array<bool> temp_visited_state(no_states);
double temp_metric_zero, temp_metric_one;
path_memory.set_size(no_states, trunc_length, false);
output.set_size(0);
// copy visited states
temp_visited_state = visited_state;
for (int i = 0; i < block_length; i++) {
// update path memory pointer
trunc_ptr = (trunc_ptr + 1) % trunc_length;
temp_rec = received_signal.mid(i * n, n);
// calculate all metrics for all codewords at the same time
calc_metric(temp_rec, delta_metrics);
for (int s = 0; s < no_states; s++) { // all states
// the states that expanded end at state s
previous_state(s, S0, S1);
if (visited_state(S0)) { // expand trellis if state S0 is visited
temp_metric_zero = sum_metric(S0)
+ delta_metrics(output_reverse_int(s, 0));
temp_visited_state(s) = true;
}
else {
temp_metric_zero = std::numeric_limits<double>::max();
}
if (visited_state(S1)) { // expand trellis if state S0 is visited
temp_metric_one = sum_metric(S1)
+ delta_metrics(output_reverse_int(s, 1));
temp_visited_state(s) = true;
}
else {
temp_metric_one = std::numeric_limits<double>::max();
}
if (temp_metric_zero < temp_metric_one) { // path zero survives
temp_sum_metric(s) = temp_metric_zero;
path_memory(s, trunc_ptr) = 0;
}
else { // path one survives
temp_sum_metric(s) = temp_metric_one;
path_memory(s, trunc_ptr) = 1;
}
} // all states, s
sum_metric = temp_sum_metric;
visited_state = temp_visited_state;
// find minimum metric
int min_metric_state = min_index(sum_metric);
// normalise accumulated metrics
sum_metric -= sum_metric(min_metric_state);
// check if we had enough metrics to generate output
if (trunc_state >= trunc_length) {
// trace back to calculate the output symbol
for (int j = trunc_length; j > 0; j--) {
// previous state calculation
min_metric_state =
previous_state(min_metric_state,
path_memory(min_metric_state,
(trunc_ptr + j) % trunc_length));
}
output.ins(output.size(), get_input(min_metric_state));
}
else { // if not increment trunc_state counter
trunc_state++;
}
} // end for (int i = 0; i < block_length; l++)
}
/*
Calculate the inverse sequence
Assumes that encode_tail is used in the encoding process. Returns false
if there is an error in the coded sequence (not a valid codeword). Do
not check that the tail forces the encoder into the zeroth state.
*/
bool Convolutional_Code::inverse_tail(const bvec coded_sequence, bvec &input)
{
int state = 0, zero_state, one_state, zero_temp, one_temp, i, j;
bvec zero_output(n), one_output(n);
int block_length = coded_sequence.size()/n - m; // no input symbols
it_error_if(block_length<=0, "The input sequence is to short");
input.set_length(block_length, false); // not include the tail in the output
for (i=0; i<block_length; i++) {
zero_state = state;
one_state = state | (1 << m);
for (j=0; j<n; j++) {
zero_temp = zero_state & gen_pol(j);
one_temp = one_state & gen_pol(j);
zero_output(j) = xor_int_table(zero_temp);
one_output(j) = xor_int_table(one_temp);
}
if (coded_sequence.mid(i*n, n) == zero_output) {
input(i) = bin(0);
state = zero_state >> 1;
} else if (coded_sequence.mid(i*n, n) == one_output) {
input(i) = bin(1);
state = one_state >> 1;
} else
return false;
}
return true;
}
/*
Check if catastrophic. Returns true if catastrophic
*/
bool Convolutional_Code::catastrophic(void)
{
int start, S, W0, W1, S0, S1;
bvec visited(1<<m);
for (start=1; start<no_states; start++) {
visited.zeros();
S = start;
visited(S) = 1;
node1:
S0 = next_state(S, 0);
S1 = next_state(S, 1);
weight(S, W0, W1);
if (S1 < start) goto node0;
if (W1 > 0) goto node0;
if (visited(S1) == bin(1))
return true;
S = S1; // goto node1
visited(S) = 1;
goto node1;
node0:
if (S0 < start) continue; // goto end;
if (W0 > 0) continue; // goto end;
if (visited(S0) == bin(1))
return true;
S = S0;
visited(S) = 1;
goto node1;
//end:
//void;
}
return false;
}
/*
Calculate distance profile. If reverse = true calculate for the reverse code instead.
*/
void Convolutional_Code::distance_profile(ivec &dist_prof, int dmax, bool reverse)
{
int max_stack_size = 50000;
ivec S_stack(max_stack_size), W_stack(max_stack_size), t_stack(max_stack_size);
int stack_pos=-1, t, S, W, W0, w0, w1;
dist_prof.set_size(K, false);
dist_prof.zeros();
dist_prof += dmax; // just select a big number!
if (reverse)
W = weight_reverse(0, 1);
else
W = weight(0, 1);
S = next_state(0, 1); // first state 0 and one as input, S = 1<<(m-1);
t = 0;
dist_prof(0) = W;
node1:
if (reverse)
weight_reverse(S, w0, w1);
else
weight(S, w0, w1);
if (t < m) {
W0 = W + w0;
if (W0 < dist_prof(m)) { // store node0 (S, W0, and t+1)
stack_pos++;
if (stack_pos >= max_stack_size) {
max_stack_size = 2*max_stack_size;
S_stack.set_size(max_stack_size, true);
W_stack.set_size(max_stack_size, true);
t_stack.set_size(max_stack_size, true);
}
S_stack(stack_pos) = next_state(S, 0); //S>>1;
W_stack(stack_pos) = W0;
t_stack(stack_pos) = t+1;
}
} else goto stack;
W += w1;
if (W > dist_prof(m))
goto stack;
t++;
S = next_state(S, 1); //S = (S>>1)|(1<<(m-1));
if (W < dist_prof(t))
dist_prof(t) = W;
if(t == m) goto stack;
goto node1;
stack:
if (stack_pos >= 0) {
// get root node from stack
S = S_stack(stack_pos);
W = W_stack(stack_pos);
t = t_stack(stack_pos);
stack_pos--;
if (W < dist_prof(t))
dist_prof(t) = W;
if (t == m) goto stack;
goto node1;
}
}
/*
Calculate spectrum
Calculates both the weight spectrum (Ad) and the information weight spectrum (Cd) and
returns it as ivec:s in the 0:th and 1:st component of spectrum, respectively. Suitable
for calculating many terms in the spectra (uses an breadth first algorithm). It is assumed
that the code is non-catastrophic or else it is a possibility for an eternal loop.
dmax = an upper bound on the free distance
no_terms = no_terms including the dmax term that should be calculated
*/
void Convolutional_Code::calculate_spectrum(Array<ivec> &spectrum, int dmax, int no_terms)
{
imat Ad_states(no_states, dmax+no_terms), Cd_states(no_states, dmax+no_terms);
imat Ad_temp(no_states, dmax+no_terms), Cd_temp(no_states, dmax+no_terms);
ivec mindist(no_states), mindist_temp(1<<m);
spectrum.set_size(2);
spectrum(0).set_size(dmax+no_terms, false);
spectrum(1).set_size(dmax+no_terms, false);
spectrum(0).zeros();
spectrum(1).zeros();
Ad_states.zeros();
Cd_states.zeros();
mindist.zeros();
int wmax = dmax+no_terms;
ivec visited_states(no_states), visited_states_temp(no_states);
bool proceede;
int d, w0, w1, s, s0, s1;
visited_states.zeros(); // 0 = false
s = next_state(0, 1); // Start in state from 0 with an one input.
visited_states(s) = 1; // 1 = true. Start in state 2^(m-1).
w1 = weight(0, 1);
Ad_states(s, w1) = 1;
Cd_states(s, w1) = 1;
mindist(s) = w1;
proceede = true;
while (proceede) {
proceede = false;
Ad_temp.zeros();
Cd_temp.zeros();
mindist_temp.zeros();
visited_states_temp.zeros(); //false
for (s=1; s<no_states; s++) {
if ((mindist(s)>0) && (mindist(s)<wmax)) {
proceede = true;
weight(s,w0,w1);
s0 = next_state(s, 0);
for (d=mindist(s); d<(wmax-w0); d++) {
Ad_temp(s0,d+w0) += Ad_states(s,d);
Cd_temp(s0,d+w0) += Cd_states(s,d);
visited_states_temp(s0) = 1; //true
}
s1 = next_state(s, 1);
for (d=mindist(s); d<(wmax-w1); d++) {
Ad_temp(s1,d+w1) += Ad_states(s,d);
Cd_temp(s1,d+w1) += Cd_states(s,d) + Ad_states(s,d);
visited_states_temp(s1) = 1; //true
}
if (mindist_temp(s0)>0) { mindist_temp(s0) = ( mindist(s)+w0 ) < mindist_temp(s0) ? mindist(s)+w0 : mindist_temp(s0); }
else { mindist_temp(s0) = mindist(s)+w0; }
if (mindist_temp(s1)>0) { mindist_temp(s1) = ( mindist(s)+w1 ) < mindist_temp(s1) ? mindist(s)+w1 : mindist_temp(s1); }
else { mindist_temp(s1) = mindist(s)+w1; }
}
}
Ad_states = Ad_temp;
Cd_states = Cd_temp;
spectrum(0) += Ad_temp.get_row(0);
spectrum(1) += Cd_temp.get_row(0);
visited_states = visited_states_temp;
mindist = elem_mult(mindist_temp, visited_states);
}
}
/*
Cederwall's fast algorithm
See IT No. 6, pp. 1146-1159, Nov. 1989 for details.
Calculates both the weight spectrum (Ad) and the information weight spectrum (Cd) and
returns it as ivec:s in the 0:th and 1:st component of spectrum, respectively. The FAST algorithm
is good for calculating only a few terms in the spectrum. If many terms are desired, use calc_spectrum instead.
The algorithm returns -1 if the code tested is worse that the input dfree and Cdfree.
It returns 0 if the code MAY be catastrophic (assuming that test_catastrophic is true),
and returns 1 if everything went right.
\arg \c dfree the free distance of the code (or an upper bound)
\arg \c no_terms including the dfree term that should be calculated
\ar \c Cdfree is the best value of information weight spectrum found so far
*/
int Convolutional_Code::fast(Array<ivec> &spectrum, const int dfree, const int no_terms, const int Cdfree, const bool test_catastrophic)
{
int cat_treshold = 7*K; // just a big number, but not to big!
int i;
ivec dist_prof(K), dist_prof_rev(K);
distance_profile(dist_prof, dfree);
distance_profile(dist_prof_rev, dfree, true); // for the reverse code
int dist_prof_rev0 = dist_prof_rev(0);
bool reverse = false; // false = use dist_prof
// is the reverse distance profile better?
for (i=0; i<K; i++) {
if (dist_prof_rev(i) > dist_prof(i)) {
reverse = true;
dist_prof_rev0 = dist_prof(0);
dist_prof = dist_prof_rev;
break;
} else if (dist_prof_rev(i) < dist_prof(i)) {
break;
}
}
int d = dfree + no_terms - 1;
int max_stack_size = 50000;
ivec S_stack(max_stack_size), W_stack(max_stack_size), b_stack(max_stack_size), c_stack(max_stack_size);
int stack_pos=-1;
// F1.
int mf = 1, b = 1;
spectrum.set_size(2);
spectrum(0).set_size(dfree+no_terms, false); // ad
spectrum(1).set_size(dfree+no_terms, false); // cd
spectrum(0).zeros();
spectrum(1).zeros();
int S, S0, S1, W0, W1, w0, w1, c = 0;
S = next_state(0, 1); //first state zero and one as input
int W = d - dist_prof_rev0;
F2:
S0 = next_state(S, 0);
S1 = next_state(S, 1);
if (reverse) {
weight(S, w0, w1);
} else {
weight_reverse(S, w0, w1);
}
W0 = W - w0;
W1 = W - w1;
if(mf < m) goto F6;
//F3:
if (W0 >= 0) {
spectrum(0)(d-W0)++;
spectrum(1)(d-W0) += b;
// The code is worse than the best found.
if ( ((d-W0) < dfree) || ( ((d-W0) == dfree) && (spectrum(1)(d-W0) > Cdfree) ) )
return -1;
}
F4:
if ( (W1 < dist_prof(m-1)) || (W < dist_prof(m)) ) goto F5;
// select node 1
if (test_catastrophic && W == W1) {
c++;
if (c>cat_treshold)
return 0;
} else {
c = 0;
W = W1;
}
S = S1;
mf = 1;
b++;
goto F2;
F5:
//if (stack_pos == -1) return n_values;
if (stack_pos == -1) goto end;
// get node from stack
S = S_stack(stack_pos);
W = W_stack(stack_pos);
b = b_stack(stack_pos);
c = c_stack(stack_pos);
stack_pos--;
mf = 1;
goto F2;
F6:
if (W0 < dist_prof(m-mf-1)) goto F4;
//F7:
if ( (W1 >= dist_prof(m-1)) && (W >= dist_prof(m)) ) {
// save node 1
if (test_catastrophic && stack_pos > 10000)
return 0;
stack_pos++;
if (stack_pos >= max_stack_size) {
max_stack_size = 2*max_stack_size;
S_stack.set_size(max_stack_size, true);
W_stack.set_size(max_stack_size, true);
b_stack.set_size(max_stack_size, true);
c_stack.set_size(max_stack_size, true);
}
S_stack(stack_pos) = S1;
W_stack(stack_pos) = W1;
b_stack(stack_pos) = b + 1; // because gone to node 1
c_stack(stack_pos) = c; // because gone to node 1
}
// select node 0
S = S0;
if (test_catastrophic && W == W0) {
c++;
if (c>cat_treshold)
return 0;
} else {
c = 0;
W = W0;
}
mf++;
goto F2;
end:
return 1;
}
//----------- These functions should be moved into some other place -------
/*!
Reverses the bitrepresentation of in (of size length) and converts to an integer
*/
int reverse_int(int length, int in)
{
int i, j, out = 0;
for (i=0; i<(length>>1); i++) {
out = out | ( (in & (1<<i)) << (length-1-(i<<1)) );
}
for (j=0; j<(length-i); j++) {
out = out | ( (in & (1<<(j+i))) >> ((j<<1)-(length&1)+1) );
//out = out | ( (in & (1<<j+i)) >> ((j<<1)-(length&1)+1) ); old version with preecedence problems in MSC
}
return out;
}
/*!
Calculate the Hamming weight of the binary representation of in of size length
*/
int weight_int(int length, int in)
{
int i, w=0;
for (i=0; i<length; i++) {
w += (in & (1<<i)) >> i;
}
return w;
}
/*!
Compare two distance spectra. Return 1 if v1 is less, 0 if v2 less, and -1 if equal.
*/
int compare_spectra(ivec v1, ivec v2)
{
it_assert_debug(v1.size() == v2.size(), "compare_spectra: wrong sizes");
for (int i=0; i<v1.size(); i++) {
if (v1(i) < v2(i)) {
return 1;
} else if (v1(i) > v2(i)) {
return 0;
}
}
return -1;
}
/*!
Compare two distance spectra using a weight profile.
Return 1 if v1 is less, 0 if v2 less, and -1 if equal.
*/
int compare_spectra(ivec v1, ivec v2, vec weight_profile)
{
double t1=0, t2=0;
for (int i=0; i<v1.size(); i++) {
t1 += (double)v1(i) * weight_profile(i);
t2 += (double)v2(i) * weight_profile(i);
}
if (t1 < t2) return 1;
else if (t1 > t2) return 0;
else return -1;
}
} // namespace itpp
|