File: galois.cpp

package info (click to toggle)
libitpp 4.0.4-2
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 7,520 kB
  • ctags: 6,341
  • sloc: cpp: 51,608; sh: 9,248; makefile: 636; fortran: 8
file content (173 lines) | stat: -rw-r--r-- 5,516 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
/*!
 * \file
 * \brief Implementation of Galois Field algebra classes and functions
 * \author Tony Ottosson
 *
 * -------------------------------------------------------------------------
 *
 * IT++ - C++ library of mathematical, signal processing, speech processing,
 *        and communications classes and functions
 *
 * Copyright (C) 1995-2008  (see AUTHORS file for a list of contributors)
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 *
 * -------------------------------------------------------------------------
 */

#include <itpp/comm/galois.h>
#include <itpp/base/math/log_exp.h>
#include <iostream>


namespace itpp {

  Array<Array<int> > GF::alphapow;
  Array<Array<int> > GF::logalpha;
  ivec GF::q="1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536";

  // set q=2^mvalue
  void GF::set_size(int qvalue)
  {
    int mtemp;

    mtemp = round_i(::log2(static_cast<double>(qvalue)));
    it_assert((1<<mtemp)==qvalue, "GF::setsize : q is not a power of 2");
    it_assert(mtemp<=16, "GF::setsize : q must be less than or equal to 2^16");

    /* Construct GF(q), q=2^m. From Wicker, "Error Control Systems
       for digital communication and storage" pp. 463-465 */

    int reduce, temp, n;
    const int reducetable[]={3,3,3,5,3,9,29,17,9,5,83,27,43,3,4107}; // starts at m=2,..,16
    it_error_if(mtemp < 1 || mtemp > 16, "createfield : m out of range");
    m=mtemp;
    if (alphapow.size() <  (m+1) ) {
      alphapow.set_size(m+1);
      logalpha.set_size(m+1);
    }

    if (alphapow(m).size() == 0) {
      alphapow(m).set_size(qvalue);
      logalpha(m).set_size(qvalue);
      alphapow(m) = 0;
      logalpha(m) = 0;
      if (m == 1) { // GF(2), special case
				alphapow(1)(0)=1;
				logalpha(1)(0)=-1; logalpha(1)(1)=0;
      } else {
				reduce=reducetable[m-2];
				alphapow(m)(0)=1; // alpha^0 = 1
				for (n=1; n<(1<<m)-1; n++) {
					temp=alphapow(m)(n-1);
					temp=(temp << 1); // multiply by alpha
					if (temp & (1<<m)) // contains alpha**m term
						alphapow(m)(n)=(temp & ~(1<<m))^reduce;
					else
						alphapow(m)(n)=temp; // if no alpha**m term, store as is

					// create table to go in opposite direction
					logalpha(m)(0)=-1; // special case, actually log(0)=-inf
				}

				for (n=0;n<(1<<m)-1;n++)
					logalpha(m)(alphapow(m)(n))=n;
      }
    }
  }

  //! Output stream operator for GF
  std::ostream &operator<<(std::ostream &os, const GF &ingf)
  {
    if (ingf.value == -1)
      os << "0";
    else
      os << "alpha^" << ingf.value;
    return os;
  }

  //! Output stream operator for GFX
  std::ostream &operator<<(std::ostream &os, const GFX &ingfx)
  {
    int terms=0;
    for (int i=0; i<ingfx.degree+1; i++) {
      if (ingfx.coeffs(i) != GF(ingfx.q,-1) ) {
				if (terms != 0) os << " + ";
				terms++;
				if (ingfx.coeffs(i) == GF(ingfx.q,0) ) {// is the coefficient an one (=alpha^0=1)
					os  << "x^" << i;
				} else {
					os  << ingfx.coeffs(i) << "*x^" << i;
				}
      }
    }
    if (terms == 0) os << "0";
    return os;
  }

  //----------------- Help Functions -----------------

  //! Division of two GFX (local help function)
  GFX divgfx(const GFX &c, const GFX &g) {
    int q = c.get_size();
    GFX temp = c;
    int tempdegree = temp.get_true_degree();
    int gdegree = g.get_true_degree();
    int degreedif = tempdegree - gdegree;
    if (degreedif < 0) return GFX(q,0); // denominator larger than nominator. Return zero polynomial.
    GFX m(q,degreedif), divisor(q);

    for (int i=0; i<c.get_degree(); i++) {
      m[degreedif] = temp[tempdegree]/g[gdegree];
      divisor.set_degree(degreedif);
      divisor.clear();
      divisor[degreedif] = m[degreedif];
      temp -= divisor*g;
      tempdegree = temp.get_true_degree();
      degreedif = tempdegree - gdegree;
      if ( (degreedif<0) || (temp.get_true_degree()==0 && temp[0] == GF(q,-1) ) ) {
				break;
      }
    }
    return m;
  }

  //! Modulo function of two GFX (local help function)
  GFX modgfx(const GFX &a, const GFX &b)
  {
    int q = a.get_size();
    GFX temp = a;
    int tempdegree = temp.get_true_degree();
    int bdegree = b.get_true_degree();
    int degreedif = a.get_true_degree() - b.get_true_degree();
    if (degreedif < 0) return temp; // Denominator larger than nominator. Return nominator.
    GFX m(q,degreedif), divisor(q);

    for (int i=0; i<a.get_degree(); i++) {
      m[degreedif] = temp[tempdegree]/b[bdegree];
      divisor.set_degree(degreedif);
      divisor.clear();
      divisor[degreedif] =  m[degreedif];
      temp -= divisor*b; // Bug-fixed. Used to be: temp -= divisor*a;
      tempdegree = temp.get_true_degree();
      degreedif = temp.get_true_degree() - bdegree;
      if ( (degreedif<0) || (temp.get_true_degree()==0 && temp[0] == GF(q,-1) ) ) {
				break;
      }
    }
    return temp;
  }

} // namespace itpp