1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
|
/*!
* \file
* \brief Class for numerically efficient log-likelihood algebra
* \author Erik G. Larsson and Martin Senst
*
* -------------------------------------------------------------------------
*
* IT++ - C++ library of mathematical, signal processing, speech processing,
* and communications classes and functions
*
* Copyright (C) 1995-2008 (see AUTHORS file for a list of contributors)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* -------------------------------------------------------------------------
*/
#include <itpp/comm/llr.h>
namespace itpp {
LLR_calc_unit::LLR_calc_unit()
{
init_llr_tables();
}
LLR_calc_unit::LLR_calc_unit(short int d1, short int d2, short int d3)
{
init_llr_tables(d1,d2,d3);
}
ivec LLR_calc_unit::get_Dint()
{
ivec r(3);
r(0) = Dint1;
r(1) = Dint2;
r(2) = Dint3;
return r;
}
void LLR_calc_unit::init_llr_tables(short int d1, short int d2, short int d3)
{
Dint1 = d1; // 1<<Dint1 determines how integral LLRs relate to real LLRs (to_double=(1<<Dint)*int_llr)
Dint2 = d2; // number of entries in table for LLR operations
Dint3 = d3; // table resolution is 2^(-(Dint1-Dint3))
logexp_table = construct_logexp_table();
}
ivec LLR_calc_unit::construct_logexp_table()
{
ivec result(Dint2);
for (int i=0; i<Dint2; i++) {
double x = pow2(static_cast<double>(Dint3 - Dint1)) * i;
result(i) = to_qllr(std::log(1 + std::exp(-x)));
}
it_assert(length(result)==Dint2,"Ldpc_codec::construct_logexp_table()");
return result;
}
QLLRvec LLR_calc_unit::to_qllr(const vec &l) const {
int n=length(l);
ivec result(n);
for (int i=0; i<n; i++) {
result.set(i,to_qllr(l(i)));
}
return result;
}
vec LLR_calc_unit::to_double(const QLLRvec &l) const {
int n=length(l);
vec result(n);
for (int i=0; i<n; i++) {
result.set(i,to_double(l(i)));
}
return result;
}
QLLRmat LLR_calc_unit::to_qllr(const mat &l) const {
int m=l.rows();
int n=l.cols();
imat result(m,n);
for (int i=0; i<m; i++) {
for (int j=0; j<n; j++) {
result.set(i,j,to_qllr(l(i,j)));
}
}
return result;
}
mat LLR_calc_unit::to_double(const QLLRmat &l) const {
int m=l.rows();
int n=l.cols();
mat result(m,n);
for (int i=0; i<m; i++) {
for (int j=0; j<n; j++) {
result.set(i,j,to_double(l(i,j)));
}
}
return result;
}
// This function used to be inline, but in my experiments,
// the non-inlined version was actually faster /Martin Senst
QLLR LLR_calc_unit::Boxplus(QLLR a, QLLR b) const
{
QLLR a_abs = (a > 0 ? a : -a);
QLLR b_abs = (b > 0 ? b : -b);
QLLR minabs = (a_abs > b_abs ? b_abs : a_abs);
QLLR term1 = (a > 0 ? (b > 0 ? minabs : -minabs)
: (b > 0 ? -minabs : minabs));
if (Dint2 == 0) { // logmax approximation - avoid looking into empty table
// Don't abort when overflowing, just saturate the QLLR
if (term1 > QLLR_MAX) {
it_info_debug("LLR_calc_unit::Boxplus(): LLR overflow");
return QLLR_MAX;
}
if (term1 < -QLLR_MAX) {
it_info_debug("LLR_calc_unit::Boxplus(): LLR overflow");
return -QLLR_MAX;
}
return term1;
}
QLLR apb = a + b;
QLLR term2 = logexp((apb > 0 ? apb : -apb));
QLLR amb = a - b;
QLLR term3 = logexp((amb > 0 ? amb : -amb));
QLLR result = term1 + term2 - term3;
// Don't abort when overflowing, just saturate the QLLR
if (result > QLLR_MAX) {
it_info_debug("LLR_calc_unit::Boxplus() LLR overflow");
return QLLR_MAX;
}
if (result < -QLLR_MAX) {
it_info_debug("LLR_calc_unit::Boxplus() LLR overflow");
return -QLLR_MAX;
}
return result;
}
std::ostream &operator<<(std::ostream &os, const LLR_calc_unit &lcu)
{
os << "---------- LLR calculation unit -----------------" << std::endl;
os << "LLR_calc_unit table properties:" << std::endl;
os << "The granularity in the LLR representation is "
<< pow2(static_cast<double>(-lcu.Dint1)) << std::endl;
os << "The LLR scale factor is " << (1 << lcu.Dint1) << std::endl;
os << "The largest LLR that can be represented is "
<< lcu.to_double(QLLR_MAX) << std::endl;
os << "The table resolution is "
<< pow2(static_cast<double>(lcu.Dint3 - lcu.Dint1)) << std::endl;
os << "The number of entries in the table is " << lcu.Dint2 << std::endl;
os << "The tables truncates at the LLR value "
<< pow2(static_cast<double>(lcu.Dint3 - lcu.Dint1)) * lcu.Dint2
<< std::endl;
os << "-------------------------------------------------" << std::endl;
return os;
}
}
|