1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
|
/*!
* \file
* \brief Definition of vector (MIMO) modulator classes
* \author Erik G. Larsson and Adam Piatyszek
*
* -------------------------------------------------------------------------
*
* IT++ - C++ library of mathematical, signal processing, speech processing,
* and communications classes and functions
*
* Copyright (C) 1995-2008 (see AUTHORS file for a list of contributors)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* -------------------------------------------------------------------------
*/
#ifndef MODULATOR_ND_H
#define MODULATOR_ND_H
#include <itpp/base/vec.h>
#include <itpp/base/array.h>
#include <itpp/comm/llr.h>
namespace itpp {
/*!
* \addtogroup modulators
*/
// ----------------------------------------------------------------------
// Modulator_ND
// ----------------------------------------------------------------------
/*!
* \ingroup modulators
* \brief Base class for an N-dimensional (ND) vector (MIMO) modulator.
*
* See \c ND_UPAM class for examples.
*
* \note Can also be used for scalar modulation/demodulation as an
* alternative to \c Modulator_1D or \c Modulator_2D. Mixed use of \c
* Modulator_1D or \c Modulator_2D and \c Modulator_ND is <b>not
* advised</b>.
*/
class Modulator_ND {
public:
//! Soft demodulation method
enum Soft_Demod_Method {
//! Log-MAP demodulation by "brute-force" enumeration of all points
FULL_ENUM_LOGMAP,
//! Zero-Forcing Log-MAP approximated demodulation
ZF_LOGMAP
};
//! Default constructor
Modulator_ND(LLR_calc_unit llrcalc_in = LLR_calc_unit()):
llrcalc(llrcalc_in) {}
//! Destructor
~Modulator_ND() {}
//! Set LLR calculation unit
void set_llrcalc(LLR_calc_unit llrcalc_in) { llrcalc = llrcalc_in; };
//! Get LLR calculation unit
LLR_calc_unit get_llrcalc() const { return llrcalc; }
//! Get number of dimensions
int get_dim() const { return nt; }
//! Get number of bits per modulation symbol per dimension
ivec get_k() const { return k; }
//! Get number of modulation symbols per dimension
ivec get_M() const { return M; }
protected:
//! Number of dimensions
int nt;
//! LLR calculation unit
LLR_calc_unit llrcalc;
//! Number of bits per modulation symbol
ivec k;
//! Number of modulation symbols along each dimension
ivec M;
//! Bit mapping table (one table per dimension)
Array<bmat> bitmap;
//! Bit pattern in decimal form ordered and the corresponding symbols (one pattern per dimension)
Array<ivec> bits2symbols;
//! Convert LLR to log-probabilities
QLLRvec probabilities(QLLR l); // some abuse of what QLLR stands for...
//! Convert LLR to log-probabilities, vector version
Array<QLLRvec> probabilities(const QLLRvec &l);
/*!
* \brief Update LLR (for internal use)
*
* This function updates the numerator and denominator in the expression
* \f[
* \log \left( \frac {\sum_{s:b_k=0} \exp(-x^2) P(s)}
* {\sum_{s:b_k=1} \exp(-x^2) P(s)} \right)
* \f]
*
* \param[in] logP_apriori Vector of a priori probabilities per bit
* \param[in] s Symbol vector
* \param[in] scaled_norm Argument of the exponents in the above
* equation
* \param[out] num Logarithm of the numerator in the above
* expression
* \param[out] denom Logarithm of the denominator in the above
* expression
*/
void update_LLR(const Array<QLLRvec> &logP_apriori, const ivec &s,
QLLR scaled_norm, QLLRvec &num, QLLRvec &denom);
/*!
* \brief Update LLR, for scalar channel (for internal use)
*
* This function updates the numerator and denominator in the expression
* \f[
* \log \left( \frac {\sum_{s:b_k=0} \exp (-x^2) P(s)}
* {\sum_{s:b_k=1} \exp (-x^2) P(s)} \right)
* \f]
*
* \param[in] logP_apriori Vector of a priori probabilities per bit
* \param[in] s Symbol
* \param[in] scaled_norm Argument of the exponents in the above
* equation
* \param[in] j Channel index (dimension)
* \param[out] num Logarithm of the numerator in the above
* expression
* \param[out] denom Logarithm of the denominator in the above
* expression
*/
void update_LLR(const Array<QLLRvec> &logP_apriori, int s,
QLLR scaled_norm, int j, QLLRvec &num, QLLRvec &denom);
};
// ----------------------------------------------------------------------
// Modulator_NRD
// ----------------------------------------------------------------------
/*!
* \ingroup modulators
* \brief Base class for N-dimensional vector (MIMO) channel
* modulators/demodulators with real-valued components.
*
* This class can be used to perform modulation and demodulation for a
* matrix (MIMO) channel of the form
* \f[ y = Hx+e \f],
* where H is the channel matrix of dimension \f$n_r\times n_t\f$, \f$y\f$
* is a received vector of length \f$n_r\f$, \f$x\f$ is a transmitted vector
* of length \f$n_t\f$ and \f$e\f$ is a noise vector.
*
* The class supports soft-input soft-output demodulation. It can also be
* used for scalar modulation to take advantage of this feature.
*
* Complex MIMO channels can be handled by using the \c Modulator_NCD
* class. Alternatively, if the signal constellation is separable in I/Q
* then the complex channel can be first transformed to a real channel
* \f[
* G = \left[ \begin{array}{cc} H_r & -H_i \\ H_i & H_r \end{array} \right]
* \f]
*
* See \c ND_UPAM for examples.
*/
class Modulator_NRD : public Modulator_ND {
public:
//! Constructor
Modulator_NRD() {}
//! Destructor
~Modulator_NRD() {}
//! Get modulation symbols per dimension
Array<vec> get_symbols() const { return symbols; }
//! Modulate \c bits into \c symbols
void modulate_bits(const bvec &bits, vec &symbols) const;
//! Modulate \c bits vector. Symbols are returned.
vec modulate_bits(const bvec &bits) const;
/*!
* \brief Soft demodulation wrapper function for various methods
*
* Currently the following two demodulation methods are supported:
* - FULL_ENUM_LOGMAP - exact demodulation, which use "brute-force"
* enumeration of all constellation points
* - ZF_LOGMAP - approximated methods with Zero-Forcing preprocessing,
* which sometimes tends to perform poorly, especially for poorly
* conditioned H
*
* \param[in] y Received vector
* \param[in] H Channel matrix
* \param[in] sigma2 Noise variance per real dimension
* (typically \f$N_0/2\f$)
* \param[in] LLR_apriori Vector of a priori LLR values per bit
* \param[out] LLR_aposteriori Vector of a posteriori LLR values
* \param[in] method Soft demodulation method
*/
void demodulate_soft_bits(const vec &y, const mat &H, double sigma2,
const QLLRvec &LLR_apriori,
QLLRvec &LLR_aposteriori,
Soft_Demod_Method method);
/*!
* \brief Soft demodulation wrapper function for various methods
*
* Currently the following two demodulation methods are supported:
* - FULL_ENUM_LOGMAP - exact demodulation, which use "brute-force"
* enumeration of all constellation points
* - ZF_LOGMAP - approximated methods with Zero-Forcing preprocessing,
* which sometimes tends to perform poorly, especially for poorly
* conditioned H
*
* \param[in] y Received vector
* \param[in] H Channel matrix
* \param[in] sigma2 Noise variance per real dimension
* (typically \f$N_0/2\f$)
* \param[in] LLR_apriori Vector of a priori LLR values per bit
* \param[in] method Soft demodulation method
* \return Vector of a posteriori LLR values
*/
QLLRvec demodulate_soft_bits(const vec &y, const mat &H, double sigma2,
const QLLRvec &LLR_apriori,
Soft_Demod_Method method);
/*!
* \brief Soft MAP demodulation for multidimensional channel, by
* "brute-force" enumeration of all constellation points.
*
* This function computes the LLR values
* \f[
* LLR(k) = \log \left( \frac
* {\sum_{s:b_k=0} \exp \left( -\frac{|y - Hs|^2}{2\sigma^2} \right) P(s)}
* {\sum_{s:b_k=1} \exp \left( -\frac{|y - Hs|^2}{2\sigma^2} \right) P(s)}
* \right)
* \f]
*
* without approximations. It is assumed that H, y and s are
* real-valued. Complex-valued channels can be handled using the \c
* Modulator_NCD class.
*
* \param[in] y Received vector
* \param[in] H Channel matrix
* \param[in] sigma2 Noise variance per real dimension
* (typically \f$N_0/2\f$)
* \param[in] LLR_apriori Vector of a priori LLR values per bit
* \param[out] LLR_aposteriori Vector of a posteriori LLR values
*
* The function performs an exhaustive search over all possible points
* \c s in the n-dimensional constellation. This is only feasible for
* relatively small constellations. The Jacobian logarithm is used to
* compute the sum-exp expression.
*/
void demodulate_soft_bits(const vec &y, const mat &H, double sigma2,
const QLLRvec &LLR_apriori,
QLLRvec &LLR_aposteriori);
/*!
* \brief Soft MAP demodulation for parallelchannels without crosstalk.
*
* This function is a much faster equivalent to \c demodulate_soft_bits
* with \f$H = \mbox{diag}(h)\f$. Its complexity is linear in the number
* of subchannels.
*/
void demodulate_soft_bits(const vec &y, const vec &h, double sigma2,
const QLLRvec &LLR_apriori,
QLLRvec &LLR_aposteriori);
//! Output some properties of the MIMO modulator (mainly to aid debugging)
friend std::ostream &operator<<(std::ostream &os, const Modulator_NRD &m);
protected:
//! Vectors of modulation symbols (along each dimension)
Array<vec> symbols;
/*!
* \brief Update residual norm (for internal use).
*
* Update the residual norm \f$|y-Hs|\f$ when moving from one
* constellation point to an adjacent point.
*
* \param[in,out] norm Norm to be updated
* \param[in] k Position where s changed
* \param[in] sold Old value of s[k]
* \param[in] snew New value of s[k]
* \param[in] ytH y'H vector
* \param[in] HtH Grammian matrix H'H
* \param[in] s Symbol vector
*/
void update_norm(double &norm, int k, int sold, int snew, const vec &ytH,
const mat &HtH, const ivec &s);
};
/*!
* \relatesalso Modulator_NRD
* \brief Print some properties of the MIMO modulator (mainly to aid debugging)
*/
std::ostream &operator<<(std::ostream &os, const Modulator_NRD &m);
// ----------------------------------------------------------------------
// Modulator_NCD
// ----------------------------------------------------------------------
/*!
* \ingroup modulators
* \brief Base class for vector (MIMO) channel modulator/demodulators
* with complex valued components.
*
* This class is equivalent to \c Modulator_NRD except for that all
* quantities are complex-valued.
*
* See \c ND_UPAM for examples.
*/
class Modulator_NCD : public Modulator_ND {
public:
//! Constructor
Modulator_NCD() {}
//! Destructor
~Modulator_NCD() {}
//! Get modulation symbols per dimension
Array<cvec> get_symbols() const { return symbols; }
//! Modulate \c bits into \c symbols
void modulate_bits(const bvec &bits, cvec &symbols) const;
//! Modulation of bits
cvec modulate_bits(const bvec &bits) const;
//! Soft demodulation wrapper function for various methods
/*!
* \brief Soft demodulation wrapper function for various methods
*
* Currently the following two demodulation methods are supported:
* - FULL_ENUM_LOGMAP - exact demodulation, which use "brute-force"
* enumeration of all constellation points
* - ZF_LOGMAP - approximated methods with Zero-Forcing preprocessing,
* which sometimes tends to perform poorly, especially for poorly
* conditioned H
*
* \param[in] y Received vector
* \param[in] H Channel matrix
* \param[in] sigma2 Noise variance per complex dimension,
* i.e. the sum of real and imaginary parts
* (typically \f$N_0\f$)
* \param[in] LLR_apriori Vector of a priori LLR values per bit
* \param[out] LLR_aposteriori Vector of a posteriori LLR values
* \param[in] method Soft demodulation method
*/
void demodulate_soft_bits(const cvec &y, const cmat &H, double sigma2,
const QLLRvec &LLR_apriori,
QLLRvec &LLR_aposteriori,
Soft_Demod_Method method);
/*!
* \brief Soft demodulation wrapper function for various methods
*
* Currently the following two demodulation methods are supported:
* - FULL_ENUM_LOGMAP - exact demodulation, which use "brute-force"
* enumeration of all constellation points
* - ZF_LOGMAP - approximated methods with Zero-Forcing preprocessing,
* which sometimes tends to perform poorly, especially for poorly
* conditioned H
*
* \param[in] y Received vector
* \param[in] H Channel matrix
* \param[in] sigma2 Noise variance per complex dimension,
* i.e. the sum of real and imaginary parts
* (typically \f$N_0\f$)
* \param[in] LLR_apriori Vector of a priori LLR values per bit
* \param[in] method Soft demodulation method
* \return Vector of a posteriori LLR values
*/
QLLRvec demodulate_soft_bits(const cvec &y, const cmat &H, double sigma2,
const QLLRvec &LLR_apriori,
Soft_Demod_Method method);
/*!
* \brief Soft MAP demodulation for multidimensional channel, by
* "brute-force" enumeration of all constellation points.
*
* This function computes the LLR values
* \f[
* LLR(k) = \log \left( \frac
* {\sum_{s:b_k=0} \exp \left( -\frac{|y - Hs|^2}{\sigma^2} \right) P(s)}
* {\sum_{s:b_k=1} \exp \left( -\frac{|y - Hs|^2}{\sigma^2} \right) P(s)}
* \right)
* \f]
*
* without approximations. It is assumed that H, y and s are
* complex-valued.
*
* \param[in] y Received vector
* \param[in] H Channel matrix
* \param[in] sigma2 Noise variance per complex dimension, i.e.
* the sum of real and imaginary parts
* (typically \f$N_0\f$)
* \param[in] LLR_apriori Vector of a priori LLR values per bit
* \param[out] LLR_aposteriori Vector of a posteriori LLR values
*
* The function performs an exhaustive search over all possible points
* \c s in the n-dimensional constellation. This is only feasible for
* relatively small constellations. The Jacobian logarithm is used to
* compute the sum-exp expression.
*/
void demodulate_soft_bits(const cvec &y, const cmat &H, double sigma2,
const QLLRvec &LLR_apriori,
QLLRvec &LLR_aposteriori);
/*!
* \brief Soft MAP demodulation for parallelchannels without crosstalk.
*
* This function is a much faster equivalent to \c demodulate_soft_bits
* with \f$H = \mbox{diag}(h)\f$. Its complexity is linear in the number
* of subchannels.
*/
void demodulate_soft_bits(const cvec &y, const cvec &H, double sigma2,
const QLLRvec &LLR_apriori,
QLLRvec &LLR_aposteriori);
//! Print some properties of the MIMO modulator (mainly to aid debugging)
friend std::ostream &operator<<(std::ostream &os, const Modulator_NCD &m);
protected:
//! Vectors of modulation symbols (along each dimension)
Array<cvec> symbols;
/*!
* \brief Update residual norm (for internal use).
*
* Update the residual norm \f$|y-Hs|\f$ when moving from one
* constellation point to an adjacent point.
*
* \param[in,out] norm Norm to be updated
* \param[in] k Position where s changed
* \param[in] sold Old value of s[k]
* \param[in] snew New value of s[k]
* \param[in] ytH y'H vector
* \param[in] HtH Grammian matrix H'H
* \param[in] s Symbol vector
*/
void update_norm(double &norm, int k, int sold, int snew, const cvec &ytH,
const cmat &HtH, const ivec &s);
};
/*!
* \relatesalso Modulator_NCD
* \brief Print some properties of the MIMO modulator (mainly to aid debugging)
*/
std::ostream &operator<<(std::ostream &os, const Modulator_NCD &m);
// ----------------------------------------------------------------------
// ND_UPAM
// ----------------------------------------------------------------------
/*!
* \ingroup modulators
* \brief Real-valued MIMO channel with uniform PAM along each dimension.
*
* <b>Example: (4 x 3 matrix channel with 4-PAM)</b>
* \code
* ND_UPAM chan; // multidimensional channel with uniform PAM
* chan.set_M(3, 4); // 3-dimensional matrix channel, 4-PAM per dimension
* cout << chan << endl;
* bvec b = randb(3*2); // 3*2 bits in total
* vec x = chan.modulate_bits(b);
* mat H = randn(4,3); // 4 x 3 real matrix channel
* double sigma2 = 0.01; // noise variance per real dimension
* vec y = H*x + sqrt(sigma2)*randn(4); // transmit vector x
* QLLRvec llr; // log-likelihood ratios
* QLLRvec llr_ap = zeros_i(3*2); // a priori equiprobable bits
* chan.demodulate_soft_bits(y, H, sigma2, llr_ap, llr);
* cout << "True bits:" << b << endl;
* cout << "LLRs:" << chan.get_llrcalc().to_double(llr) << endl;
* \endcode
*
* <b>Example: (scalar channel with 8-PAM)</b>
* \code
* ND_UPAM chan;
* chan.set_M(1, 8); // scalar channel, 8-PAM (3 bits per symbol)
* cout << chan << endl;
* bvec b = randb(3);
* vec x = chan.modulate_bits(b);
* mat H = "1.0"; // scalar channel
* double sigma2 = 0.01;
* vec y= H*x + sqrt(sigma2)*randn(); // transmit vector x
* QLLRvec llr;
* QLLRvec llr_ap = zeros_i(3);
* chan.demodulate_soft_bits(y, H, sigma2, llr_ap, llr);
* cout << "True bits:" << b << endl;
* cout << "LLRs:" << chan.get_llrcalc().to_double(llr) << endl;
* \endcode
*/
class ND_UPAM : public Modulator_NRD {
public:
//! Constructor
ND_UPAM(int nt = 1, int Mary = 2);
//! Destructor
~ND_UPAM() {}
//! Set component modulators to M-PAM with Gray mapping
void set_M(int nt = 1, int Mary = 2);
//! Set component modulators to M-PAM with Gray mapping, different M per component
void set_M(int nt = 1, ivec Mary = "2");
/*!
* \brief Sphere decoding
*
* This function solves the integer-constrained minimization problem
* \f[
* \mbox{min} |y - Hs|
* \f]
* with respect to \f$s\f$ using a sphere decoding algorithm and the
* Schnorr-Eucner search strategy (see the source code for further
* implementation notes). The function starts with an initial search
* radius and increases it with a factor (\c stepup) until the search
* succeeds.
*
* \param[in] y received data vector (\f$n_r\times 1\f$)
* \param[in] H channel matrix (\f$n_r\times n_t\f$)
* \param[in] rmax maximum possible sphere radius to try
* \param[in] rmin sphere radius in the first try
* \param[in] stepup factor with which the sphere radius is
* increased if the search fails
* \param[out] detected_bits result of the search (hard decisions only,
* QLLR for a sure "1" is set to 1000)
* \return status of the decoding: 0 if the search suceeds, -1 otherwise
*/
int sphere_decoding(const vec &y, const mat &H, double rmin, double rmax,
double stepup, QLLRvec &detected_bits);
private:
// Sphere decoding search with Schnorr Eucner strategy.
int sphere_search_SE(const vec &y, const mat &H, const imat &zrange,
double r, ivec &zhat);
vec spacing; // spacing between the constellation points
inline int sign_nozero_i(int a) { return (a > 0 ? 1 : -1); }
inline int sign_nozero_i(double a) { return (a > 0.0 ? 1 : -1); }
};
// ----------------------------------------------------------------------
// ND_UQAM
// ----------------------------------------------------------------------
/*!
* \ingroup modulators
* \brief Complex MIMO channel with uniform QAM per dimension
*/
class ND_UQAM : public Modulator_NCD {
public:
//! Constructor
ND_UQAM(int nt = 1, int Mary = 4);
//! Destructor
~ND_UQAM() {}
//! Set component modulators to M-QAM with Gray mapping
void set_M(int nt = 1, int Mary = 4);
//! Set component modulators to M-QAM with Gray mapping, different M per component
void set_M(int nt = 1, ivec Mary = "4");
protected:
ivec L; //!< the square root of M
};
// ----------------------------------------------------------------------
// ND_UPSK
// ----------------------------------------------------------------------
/*!
* \ingroup modulators
* Complex MIMO channel with uniform PSK per dimension
*/
class ND_UPSK : public Modulator_NCD {
public:
//! Constructor
ND_UPSK(int nt = 1, int Mary = 4);
//! Destructor
~ND_UPSK() {}
//! Set component modulators to M-QAM with Gray mapping
void set_M(int nt = 1, int Mary = 4);
//! Set component modulators to M-QAM with Gray mapping, different M per component
void set_M(int nt = 1, ivec Mary = "4");
};
} // namespace itpp
#endif // #ifndef MODULATOR_ND_H
|