File: rec_syst_conv_code.cpp

package info (click to toggle)
libitpp 4.0.4-2
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 7,520 kB
  • ctags: 6,341
  • sloc: cpp: 51,608; sh: 9,248; makefile: 636; fortran: 8
file content (703 lines) | stat: -rw-r--r-- 25,295 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
/*!
 * \file
 * \brief Implementation of a Recursive Systematic Convolutional codec class
 * \author Pal Frenger.  QLLR support by Erik G. Larsson.
 *
 * -------------------------------------------------------------------------
 *
 * IT++ - C++ library of mathematical, signal processing, speech processing,
 *        and communications classes and functions
 *
 * Copyright (C) 1995-2008  (see AUTHORS file for a list of contributors)
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 *
 * -------------------------------------------------------------------------
 */

#include <itpp/comm/rec_syst_conv_code.h>


namespace itpp {

  //! Pointer to logarithmic branch metric function
  double (*com_log) (double, double) = NULL;

  //! \cond
  // This wrapper is because "com_log = std::max;" below caused an error
  inline double max(double x, double y) { return std::max(x, y); }
  //! \endcond

  // ----------------- Protected functions -----------------------------

  int Rec_Syst_Conv_Code::calc_state_transition(const int instate, const int input, ivec &parity)
  {
    int i, j, in = 0, temp = (gen_pol_rev(0) & (instate<<1)), parity_temp, parity_bit;

    for (i=0; i<K; i++) {
      in = (temp & 1) ^ in;
      temp = temp >> 1;
    }
    in = in ^ input;

    parity.set_size(n-1,false);
    for (j=0; j<(n-1); j++) {
      parity_temp = ((instate<<1) + in) & gen_pol_rev(j+1);
      parity_bit = 0;
      for (i=0; i<K; i++) {
	parity_bit = (parity_temp & 1) ^ parity_bit;
	parity_temp = parity_temp >> 1;
      }
      parity(j) = parity_bit;
    }
    return in + ((instate << 1) & ((1<<m)-1));
  }

  // --------------- Public functions -------------------------
  void Rec_Syst_Conv_Code::set_generator_polynomials(const ivec &gen, int constraint_length)
  {
    int j;
    gen_pol = gen;
    n = gen.size();
    K = constraint_length;
    m = K-1;
    rate = 1.0/n;

    gen_pol_rev.set_size(n,false);
    for (int i=0; i<n; i++) {
      gen_pol_rev(i) = reverse_int(K, gen_pol(i));
    }

    Nstates = (1<<m);
    state_trans.set_size(Nstates,2,false);
    rev_state_trans.set_size(Nstates,2,false);
    output_parity.set_size(Nstates,2*(n-1),false);
    rev_output_parity.set_size(Nstates,2*(n-1),false);
    int s0, s1, s_prim;
    ivec p0, p1;
    for (s_prim=0; s_prim<Nstates; s_prim++) {
      s0 = calc_state_transition(s_prim,0,p0);
      state_trans(s_prim,0) = s0;
      rev_state_trans(s0,0) = s_prim;
      for (j=0; j<(n-1); j++) {
	output_parity(s_prim,2*j+0) = p0(j);
	rev_output_parity(s0,2*j+0) = p0(j);
      }

      s1 = calc_state_transition(s_prim,1,p1);
      state_trans(s_prim,1) = s1;
      rev_state_trans(s1,1) = s_prim;
      for (j=0; j<(n-1); j++) {
	output_parity(s_prim,2*j+1) = p1(j);
	rev_output_parity(s1,2*j+1) = p1(j);
      }
    }

    ln2 = std::log(2.0);

    //The default value of Lc is 1:
    Lc = 1.0;
  }

  void Rec_Syst_Conv_Code::set_awgn_channel_parameters(double Ec, double N0)
  {
    Lc = 4.0 * std::sqrt(Ec)/N0;
  }

  void Rec_Syst_Conv_Code::set_scaling_factor(double in_Lc)
  {
    Lc = in_Lc;
  }

  void Rec_Syst_Conv_Code::encode_tail(const bvec &input, bvec &tail, bmat &parity_bits)
  {
    int i, j, length = input.size(), target_state;
    parity_bits.set_size(length+m, n-1, false);
    tail.set_size(m, false);

    encoder_state = 0;
    for (i=0; i<length; i++) {
      for (j=0; j<(n-1); j++) {
	parity_bits(i,j) = output_parity(encoder_state,2*j+int(input(i)));
      }
      encoder_state = state_trans(encoder_state,int(input(i)));
    }

    // add tail of m=K-1 zeros
    for (i=0; i<m; i++) {
      target_state = (encoder_state<<1) & ((1<<m)-1);
      if (state_trans(encoder_state,0)==target_state) { tail(i) = bin(0); } else { tail(i) = bin(1); }
      for (j=0; j<(n-1); j++) {
	parity_bits(length+i,j) = output_parity(encoder_state,2*j+int(tail(i)));
      }
      encoder_state = target_state;
    }
    terminated = true;
  }

  void Rec_Syst_Conv_Code::encode(const bvec &input, bmat &parity_bits)
  {
    int i, j, length = input.size();
    parity_bits.set_size(length, n-1, false);

    encoder_state = 0;
    for (i=0; i<length; i++) {
      for (j=0; j<(n-1); j++) {
	parity_bits(i,j) = output_parity(encoder_state,2*j+int(input(i)));
      }
      encoder_state = state_trans(encoder_state,int(input(i)));
    }
    terminated = false;
  }

  void Rec_Syst_Conv_Code::map_decode(const vec &rec_systematic, const mat &rec_parity, const vec &extrinsic_input,
				      vec &extrinsic_output, bool in_terminated)
  {
    double gamma_k_e, nom, den, temp0, temp1, exp_temp0, exp_temp1;
    int j, s0, s1, k, kk, s, s_prim, s_prim0, s_prim1, block_length = rec_systematic.length();
    ivec p0, p1;

    alpha.set_size(Nstates,block_length+1,false);
    beta.set_size(Nstates,block_length+1,false);
    gamma.set_size(2*Nstates,block_length+1,false);
    denom.set_size(block_length+1,false); denom.clear();
    extrinsic_output.set_size(block_length,false);

    if (in_terminated) { terminated = true; }

    //Calculate gamma
    for (k=1; k<=block_length; k++) {
      kk = k-1;
      for (s_prim = 0; s_prim<Nstates; s_prim++) {
	exp_temp0 = 0.0;
	exp_temp1 = 0.0;
	for (j=0; j<(n-1); j++) {
	  exp_temp0 += 0.5*Lc*rec_parity(kk,j)*double(1-2*output_parity(s_prim,2*j+0)); /* Is this OK? */
	  exp_temp1 += 0.5*Lc*rec_parity(kk,j)*double(1-2*output_parity(s_prim,2*j+1));
	}
	//	gamma(2*s_prim+0,k) = std::exp( 0.5*(extrinsic_input(kk) + Lc*rec_systematic(kk))) * std::exp( exp_temp0 );
	//	gamma(2*s_prim+1,k) = std::exp(-0.5*(extrinsic_input(kk) + Lc*rec_systematic(kk))) * std::exp( exp_temp1 );
	/* == Changed to trunc_exp() to address bug 1088420 which
	   described a numerical instability problem in map_decode()
	   at high SNR. This should be regarded as a temporary fix and
	   it is not necessarily a waterproof one: multiplication of
	   probabilities still can result in values out of
	   range. (Range checking for the multiplication operator was
	   not implemented as it was felt that this would sacrifice
	   too much runtime efficiency.  Some margin was added to the
	   numerical hardlimits below to reflect this. The hardlimit
	   values below were taken as the minimum range that a
	   "double" should support reduced by a few orders of
	   magnitude to make sure multiplication of several values
	   does not exceed the limits.)

	   It is suggested to use the QLLR based log-domain() decoders
	   instead of map_decode() as they are much faster and more
	   numerically stable.

	   EGL 8/06. == */
	gamma(2*s_prim+0,k) = trunc_exp( 0.5*(extrinsic_input(kk) + Lc*rec_systematic(kk)) + exp_temp0 );
	gamma(2*s_prim+1,k) = trunc_exp(-0.5*(extrinsic_input(kk) + Lc*rec_systematic(kk)) + exp_temp1 );
      }
    }

    //Initiate alpha
    alpha.set_col(0,zeros(Nstates));
    alpha(0,0) = 1.0;

    //Calculate alpha and denom going forward through the trellis
    for (k=1; k<=block_length; k++) {
      for (s=0; s<Nstates; s++) {
	s_prim0 = rev_state_trans(s,0);
	s_prim1 = rev_state_trans(s,1);
	temp0 = alpha(s_prim0,k-1) * gamma(2*s_prim0+0,k);
	temp1 = alpha(s_prim1,k-1) * gamma(2*s_prim1+1,k);
	alpha(s,k) = temp0 + temp1;
	denom(k)  += temp0 + temp1;
      }
      alpha.set_col(k, alpha.get_col(k) / denom(k) );
    }

    //Initiate beta
    if (terminated) {
      beta.set_col( block_length, zeros(Nstates) );
      beta(0,block_length) = 1.0;
    } else {
      beta.set_col( block_length, alpha.get_col( block_length ) );
    }

    //Calculate beta going backward in the trellis
    for (k=block_length; k>=2; k--) {
      for (s_prim=0; s_prim<Nstates; s_prim++) {
	s0 = state_trans(s_prim,0);
	s1 = state_trans(s_prim,1);
	beta(s_prim,k-1) = (beta(s0,k) * gamma(2*s_prim+0,k)) + (beta(s1,k) * gamma(2*s_prim+1,k));
      }
      beta.set_col( k-1, beta.get_col(k-1) / denom(k) );
    }

    //Calculate extrinsic output for each bit
    for (k=1; k<=block_length; k++) {
      kk = k-1;
      nom = 0;
      den = 0;
      for (s_prim=0; s_prim<Nstates; s_prim++) {
	s0 = state_trans(s_prim,0);
	s1 = state_trans(s_prim,1);
	exp_temp0 = 0.0;
	exp_temp1 = 0.0;
	for (j=0; j<(n-1); j++) {
	  exp_temp0 += 0.5*Lc*rec_parity(kk,j)*double(1-2*output_parity(s_prim,2*j+0));
	  exp_temp1 += 0.5*Lc*rec_parity(kk,j)*double(1-2*output_parity(s_prim,2*j+1));
	}
	//	gamma_k_e = std::exp( exp_temp0 );
	gamma_k_e = trunc_exp( exp_temp0 );
	nom += alpha(s_prim,k-1) * gamma_k_e * beta(s0,k);

	// gamma_k_e = std::exp( exp_temp1 );
	gamma_k_e = trunc_exp( exp_temp1 );
	den += alpha(s_prim,k-1) * gamma_k_e * beta(s1,k);
      }
      //      extrinsic_output(kk) = std::log(nom/den);
      extrinsic_output(kk) = trunc_log(nom/den);
    }

  }

  void Rec_Syst_Conv_Code::log_decode(const vec &rec_systematic, const mat &rec_parity,
    const vec &extrinsic_input, vec &extrinsic_output, bool in_terminated, std::string metric)
  {
    if (metric=="TABLE") {
      /* Use the QLLR decoder.  This can probably be done more
	 efficiently since it converts floating point vectors to QLLR.
	 However we have to live with this for the time being. */
      QLLRvec rec_systematic_q  = llrcalc.to_qllr(rec_systematic);
      QLLRmat rec_parity_q = llrcalc.to_qllr(rec_parity);
      QLLRvec extrinsic_input_q = llrcalc.to_qllr(extrinsic_input);
      QLLRvec extrinsic_output_q(length(extrinsic_output));
      log_decode(rec_systematic_q,rec_parity_q,extrinsic_input_q,
		 extrinsic_output_q,in_terminated);
      extrinsic_output = llrcalc.to_double(extrinsic_output_q);
      return;
    }

    double nom, den, exp_temp0, exp_temp1, rp, temp0, temp1;
    int i, j, s0, s1, k, kk, l, s, s_prim, s_prim0, s_prim1, block_length = rec_systematic.length();
    ivec p0, p1;

    //Set the internal metric:
    if (metric=="LOGMAX") { com_log = max; }
    else if (metric=="LOGMAP") { com_log = log_add; }
    else {
      it_error("Rec_Syst_Conv_Code::log_decode: Illegal metric parameter");
    }

    alpha.set_size(Nstates,block_length+1,false);
    beta.set_size(Nstates,block_length+1,false);
    gamma.set_size(2*Nstates,block_length+1,false);
    extrinsic_output.set_size(block_length,false);
    denom.set_size(block_length+1,false); for (k=0; k<=block_length; k++) { denom(k) = -infinity; }

    if (in_terminated) { terminated = true; }

    //Check that Lc = 1.0
    it_assert(Lc==1.0,
	      "Rec_Syst_Conv_Code::log_decode: This function assumes that Lc = 1.0. Please use proper scaling of the input data");

    //Calculate gamma
    for (k=1; k<=block_length; k++) {
      kk = k-1;
      for (s_prim = 0; s_prim<Nstates; s_prim++) {
	exp_temp0 = 0.0;
	exp_temp1 = 0.0;
	for (j=0; j<(n-1); j++) {
	  rp = rec_parity(kk,j);
	  if (output_parity( s_prim , 2*j+0 )==0) { exp_temp0 += rp; } else { exp_temp0 -= rp; }
	  if (output_parity( s_prim , 2*j+1 )==0) { exp_temp1 += rp; } else { exp_temp1 -= rp; }
	}
	gamma(2*s_prim+0,k) =  0.5 * (( extrinsic_input(kk) + rec_systematic(kk) ) + exp_temp0);
	gamma(2*s_prim+1,k) = -0.5 * (( extrinsic_input(kk) + rec_systematic(kk) ) - exp_temp1);
      }
    }

    //Initiate alpha
    for (j=1; j<Nstates; j++) { alpha(j,0) = -infinity; }
    alpha(0,0) = 0.0;

    //Calculate alpha, going forward through the trellis
    for (k=1; k<=block_length; k++) {
      for (s = 0; s<Nstates; s++) {
	s_prim0 = rev_state_trans(s,0);
	s_prim1 = rev_state_trans(s,1);
	temp0 = alpha(s_prim0,k-1) + gamma(2*s_prim0+0,k);
	temp1 = alpha(s_prim1,k-1) + gamma(2*s_prim1+1,k);
	alpha(s,k) = com_log( temp0, temp1 );
	denom(k)   = com_log( alpha(s,k), denom(k) );
      }
      //Normalization of alpha
      for (l=0; l<Nstates; l++) { alpha(l,k) -= denom(k); }
    }

    //Initiate beta
    if (terminated) {
      for (i=1; i<Nstates; i++) { beta(i,block_length) = -infinity; }
      beta(0,block_length) = 0.0;
    } else {
      beta.set_col(block_length, alpha.get_col(block_length) );
    }

    //Calculate beta going backward in the trellis
    for (k=block_length; k>=1; k--) {
      for (s_prim=0; s_prim<Nstates; s_prim++) {
	s0 = state_trans(s_prim,0);
	s1 = state_trans(s_prim,1);
	beta(s_prim,k-1) = com_log( beta(s0,k) + gamma(2*s_prim+0,k) , beta(s1,k) + gamma(2*s_prim+1,k) );
      }
      //Normalization of beta
      for (l=0; l<Nstates; l++) { beta(l,k-1) -= denom(k); }
    }

    //Calculate extrinsic output for each bit
    for (k=1; k<=block_length; k++) {
      kk = k-1;
      nom = -infinity;
      den = -infinity;
      for (s_prim=0; s_prim<Nstates; s_prim++) {
	s0 = state_trans(s_prim,0);
	s1 = state_trans(s_prim,1);
	exp_temp0 = 0.0;
	exp_temp1 = 0.0;
	for (j=0; j<(n-1); j++) {
	  rp = rec_parity(kk,j);
	  if (output_parity( s_prim , 2*j+0 )==0) { exp_temp0 += rp; } else { exp_temp0 -= rp; }
	  if (output_parity( s_prim , 2*j+1 )==0) { exp_temp1 += rp; } else { exp_temp1 -= rp; }
	}
	nom = com_log(nom, alpha(s_prim,kk) + 0.5*exp_temp0 + beta(s0,k) );
	den = com_log(den, alpha(s_prim,kk) + 0.5*exp_temp1 + beta(s1,k) );
      }
      extrinsic_output(kk) = nom - den;
    }

  }

  void Rec_Syst_Conv_Code::log_decode_n2(const vec &rec_systematic, const vec &rec_parity,
    const vec &extrinsic_input, vec &extrinsic_output, bool in_terminated, std::string metric)
  {
    if (metric=="TABLE") {  // use the QLLR decoder; also see comment under log_decode()
      QLLRvec rec_systematic_q  = llrcalc.to_qllr(rec_systematic);
      QLLRvec rec_parity_q = llrcalc.to_qllr(rec_parity);
      QLLRvec extrinsic_input_q = llrcalc.to_qllr(extrinsic_input);
      QLLRvec extrinsic_output_q(length(extrinsic_output));
      log_decode_n2(rec_systematic_q,rec_parity_q,extrinsic_input_q,
		    extrinsic_output_q,in_terminated);
      extrinsic_output = llrcalc.to_double(extrinsic_output_q);
      return;
    }

    //    const double INF = 10e300;  // replaced by DEFINE to be file-wide in scope
    double nom, den, exp_temp0, exp_temp1, rp;
    int k, kk, l, s, s_prim, s_prim0, s_prim1, block_length = rec_systematic.length();
    int ext_info_length = extrinsic_input.length();
    ivec p0, p1;
    double ex, norm;

    //Set the internal metric:
    if (metric=="LOGMAX") { com_log = max; }
    else if (metric=="LOGMAP") { com_log = log_add; }
    else {
      it_error("Rec_Syst_Conv_Code::log_decode_n2: Illegal metric parameter");
    }

    alpha.set_size(Nstates,block_length+1,false);
    beta.set_size(Nstates,block_length+1,false);
    gamma.set_size(2*Nstates,block_length+1,false);
    extrinsic_output.set_size(ext_info_length,false);
    //denom.set_size(block_length+1,false); for (k=0; k<=block_length; k++) { denom(k) = -infinity; }

    if (in_terminated) { terminated = true; }

    //Check that Lc = 1.0
    it_assert(Lc==1.0,
	      "Rec_Syst_Conv_Code::log_decode_n2: This function assumes that Lc = 1.0. Please use proper scaling of the input data");

    //Initiate alpha
    for (s=1; s<Nstates; s++) { alpha(s,0) = -infinity; }
    alpha(0,0) = 0.0;

    //Calculate alpha and gamma going forward through the trellis
    for (k=1; k<=block_length; k++) {
      kk = k-1;
      if (kk<ext_info_length) {
	ex = 0.5 * ( extrinsic_input(kk) + rec_systematic(kk) );
      } else {
	ex = 0.5 * rec_systematic(kk);
      }
      rp = 0.5 * rec_parity(kk);
      for (s = 0; s<Nstates; s++) {
	s_prim0 = rev_state_trans(s,0);
	s_prim1 = rev_state_trans(s,1);
	if (output_parity( s_prim0 , 0 )) { exp_temp0 = -rp; } else { exp_temp0 = rp; }
	if (output_parity( s_prim1 , 1 )) { exp_temp1 = -rp; } else { exp_temp1 = rp; }
	gamma(2*s_prim0  ,k) =   ex + exp_temp0;
	gamma(2*s_prim1+1,k) =  -ex + exp_temp1;
	alpha(s,k) = com_log( alpha(s_prim0,kk) + gamma(2*s_prim0  ,k),
			      alpha(s_prim1,kk) + gamma(2*s_prim1+1,k)  );
	//denom(k)   = com_log( alpha(s,k), denom(k) );
      }
      norm = alpha(0,k); //norm = denom(k);
      for (l=0; l<Nstates; l++) { alpha(l,k) -= norm; }
    }

    //Initiate beta
    if (terminated) {
      for (s=1; s<Nstates; s++) { beta(s,block_length) = -infinity; }
      beta(0,block_length) = 0.0;
    } else {
      beta.set_col(block_length, alpha.get_col(block_length) );
    }

    //Calculate beta going backward in the trellis
    for (k=block_length; k>=1; k--) {
      kk = k-1;
      for (s_prim=0; s_prim<Nstates; s_prim++) {
	beta(s_prim,kk) = com_log( beta(state_trans(s_prim,0),k) + gamma(2*s_prim,k),
				   beta(state_trans(s_prim,1),k) + gamma(2*s_prim+1,k) );
      }
      norm = beta(0,k); //norm = denom(k);
      for (l=0; l<Nstates; l++) { beta(l,k) -= norm; }
    }

    //Calculate extrinsic output for each bit
    for (k=1; k<=block_length; k++) {
      kk = k-1;
      if (kk<ext_info_length) {
	nom = -infinity;
	den = -infinity;
	rp = 0.5 * rec_parity(kk);
	for (s_prim=0; s_prim<Nstates; s_prim++) {
	  if (output_parity( s_prim , 0 )) { exp_temp0 = -rp; } else { exp_temp0 = rp; }
	  if (output_parity( s_prim , 1 )) { exp_temp1 = -rp; } else { exp_temp1 = rp; }
	  nom = com_log(nom, alpha(s_prim,kk) + exp_temp0 + beta(state_trans(s_prim,0),k) );
	  den = com_log(den, alpha(s_prim,kk) + exp_temp1 + beta(state_trans(s_prim,1),k) );
	}
	extrinsic_output(kk) = nom - den;
      }
    }
  }

  // === Below new decoder functions by EGL, using QLLR arithmetics ===========

  void Rec_Syst_Conv_Code::log_decode(const QLLRvec &rec_systematic, const QLLRmat &rec_parity,
				      const QLLRvec &extrinsic_input,
				      QLLRvec &extrinsic_output, bool in_terminated)
  {

    int nom, den, exp_temp0, exp_temp1, rp, temp0, temp1;
    int i, j, s0, s1, k, kk, l, s, s_prim, s_prim0, s_prim1, block_length = rec_systematic.length();
    //    ivec p0, p1;

    alpha_q.set_size(Nstates,block_length+1,false);
    beta_q.set_size(Nstates,block_length+1,false);
    gamma_q.set_size(2*Nstates,block_length+1,false);
    extrinsic_output.set_size(block_length,false);
    denom_q.set_size(block_length+1,false); for (k=0; k<=block_length; k++) { denom_q(k) = -QLLR_MAX; }

    if (in_terminated) { terminated = true; }

    //Check that Lc = 1.0
    it_assert(Lc==1.0,
	      "Rec_Syst_Conv_Code::log_decode: This function assumes that Lc = 1.0. Please use proper scaling of the input data");

    //Calculate gamma_q
    for (k=1; k<=block_length; k++) {
      kk = k-1;
      for (s_prim = 0; s_prim<Nstates; s_prim++) {
	exp_temp0 = 0;
	exp_temp1 = 0;
	for (j=0; j<(n-1); j++) {
	  rp = rec_parity(kk,j);
	  if (output_parity( s_prim , 2*j+0 )==0) { exp_temp0 += rp; } else { exp_temp0 -= rp; }
	  if (output_parity( s_prim , 2*j+1 )==0) { exp_temp1 += rp; } else { exp_temp1 -= rp; }
	}
	// right shift cannot be used due to implementation dependancy of how sign is handled?
	gamma_q(2*s_prim+0,k) =   (( extrinsic_input(kk) + rec_systematic(kk) ) + exp_temp0)/2;
	gamma_q(2*s_prim+1,k) = - (( extrinsic_input(kk) + rec_systematic(kk) ) - exp_temp1)/2;
      }
    }

    //Initiate alpha_q
    for (j=1; j<Nstates; j++) { alpha_q(j,0) = -QLLR_MAX; }
    alpha_q(0,0) = 0;

    //Calculate alpha_q, going forward through the trellis
    for (k=1; k<=block_length; k++) {
      for (s = 0; s<Nstates; s++) {
	s_prim0 = rev_state_trans(s,0);
	s_prim1 = rev_state_trans(s,1);
	temp0 = alpha_q(s_prim0,k-1) + gamma_q(2*s_prim0+0,k);
	temp1 = alpha_q(s_prim1,k-1) + gamma_q(2*s_prim1+1,k);
	//	alpha_q(s,k) = com_log( temp0, temp1 );
	//	denom_q(k)   = com_log( alpha_q(s,k), denom_q(k) );
	alpha_q(s,k) = llrcalc.jaclog( temp0, temp1 );
	denom_q(k)   = llrcalc.jaclog( alpha_q(s,k), denom_q(k) );
      }
      //Normalization of alpha_q
      for (l=0; l<Nstates; l++) { alpha_q(l,k) -= denom_q(k); }
    }

    //Initiate beta_q
    if (terminated) {
      for (i=1; i<Nstates; i++) { beta_q(i,block_length) = -QLLR_MAX; }
      beta_q(0,block_length) = 0;
    } else {
      beta_q.set_col(block_length, alpha_q.get_col(block_length) );
    }

    //Calculate beta_q going backward in the trellis
    for (k=block_length; k>=1; k--) {
      for (s_prim=0; s_prim<Nstates; s_prim++) {
	s0 = state_trans(s_prim,0);
	s1 = state_trans(s_prim,1);
	//	beta_q(s_prim,k-1) = com_log( beta_q(s0,k) + gamma_q(2*s_prim+0,k) , beta_q(s1,k) + gamma_q(2*s_prim+1,k) );
	beta_q(s_prim,k-1) = llrcalc.jaclog( beta_q(s0,k) + gamma_q(2*s_prim+0,k) , beta_q(s1,k) + gamma_q(2*s_prim+1,k) );
      }
      //Normalization of beta_q
      for (l=0; l<Nstates; l++) { beta_q(l,k-1) -= denom_q(k); }
    }

    //Calculate extrinsic output for each bit
    for (k=1; k<=block_length; k++) {
      kk = k-1;
      nom = -QLLR_MAX;
      den = -QLLR_MAX;
      for (s_prim=0; s_prim<Nstates; s_prim++) {
	s0 = state_trans(s_prim,0);
	s1 = state_trans(s_prim,1);
	exp_temp0 = 0;
	exp_temp1 = 0;
	for (j=0; j<(n-1); j++) {
	  rp = rec_parity(kk,j);
	  if (output_parity( s_prim , 2*j+0 )==0) { exp_temp0 += rp; } else { exp_temp0 -= rp; }
	  if (output_parity( s_prim , 2*j+1 )==0) { exp_temp1 += rp; } else { exp_temp1 -= rp; }
	}
	//	nom = com_log(nom, alpha_q(s_prim,kk) + 0.5*exp_temp0 + beta_q(s0,k) );
	//	den = com_log(den, alpha_q(s_prim,kk) + 0.5*exp_temp1 + beta_q(s1,k) );
	nom = llrcalc.jaclog(nom, alpha_q(s_prim,kk) + exp_temp0/2 + beta_q(s0,k) );
	den = llrcalc.jaclog(den, alpha_q(s_prim,kk) + exp_temp1/2 + beta_q(s1,k) );
      }
      extrinsic_output(kk) = nom - den;
    }

  }



  void Rec_Syst_Conv_Code::log_decode_n2(const QLLRvec &rec_systematic,
					 const QLLRvec &rec_parity,
					 const QLLRvec &extrinsic_input,
					 QLLRvec &extrinsic_output,
					 bool in_terminated)
  {
    int nom, den, exp_temp0, exp_temp1, rp;
    int k, kk, l, s, s_prim, s_prim0, s_prim1, block_length = rec_systematic.length();
    int ext_info_length = extrinsic_input.length();
    ivec p0, p1;
    int ex, norm;


    alpha_q.set_size(Nstates,block_length+1,false);
    beta_q.set_size(Nstates,block_length+1,false);
    gamma_q.set_size(2*Nstates,block_length+1,false);
    extrinsic_output.set_size(ext_info_length,false);
    //denom.set_size(block_length+1,false); for (k=0; k<=block_length; k++) { denom(k) = -infinity; }

    if (in_terminated) { terminated = true; }

    //Check that Lc = 1.0
    it_assert(Lc==1.0,
	      "Rec_Syst_Conv_Code::log_decode_n2: This function assumes that Lc = 1.0. Please use proper scaling of the input data");

    //Initiate alpha
    for (s=1; s<Nstates; s++) { alpha_q(s,0) = -QLLR_MAX; }
    alpha_q(0,0) = 0;

    //Calculate alpha and gamma going forward through the trellis
    for (k=1; k<=block_length; k++) {
      kk = k-1;
      if (kk<ext_info_length) {
	ex =  ( extrinsic_input(kk) + rec_systematic(kk) )/2;
      } else {
	ex =  rec_systematic(kk)/2;
      }
      rp =  rec_parity(kk)/2;
      for (s = 0; s<Nstates; s++) {
	s_prim0 = rev_state_trans(s,0);
	s_prim1 = rev_state_trans(s,1);
	if (output_parity( s_prim0 , 0 )) { exp_temp0 = -rp; } else { exp_temp0 = rp; }
	if (output_parity( s_prim1 , 1 )) { exp_temp1 = -rp; } else { exp_temp1 = rp; }
	gamma_q(2*s_prim0  ,k) =   ex + exp_temp0;
	gamma_q(2*s_prim1+1,k) =  -ex + exp_temp1;
	alpha_q(s,k) = llrcalc.jaclog( alpha_q(s_prim0,kk) + gamma_q(2*s_prim0  ,k),
			      alpha_q(s_prim1,kk) + gamma_q(2*s_prim1+1,k)  );
	//denom(k)   = com_log( alpha(s,k), denom(k) );
      }
      norm = alpha_q(0,k); //norm = denom(k);
      for (l=0; l<Nstates; l++) { alpha_q(l,k) -= norm; }
    }

    //Initiate beta
    if (terminated) {
      for (s=1; s<Nstates; s++) { beta_q(s,block_length) = -QLLR_MAX; }
      beta_q(0,block_length) = 0;
    } else {
      beta_q.set_col(block_length, alpha_q.get_col(block_length) );
    }

    //Calculate beta going backward in the trellis
    for (k=block_length; k>=1; k--) {
      kk = k-1;
      for (s_prim=0; s_prim<Nstates; s_prim++) {
	beta_q(s_prim,kk) = llrcalc.jaclog( beta_q(state_trans(s_prim,0),k) + gamma_q(2*s_prim,k),
				   beta_q(state_trans(s_prim,1),k) + gamma_q(2*s_prim+1,k) );
      }
      norm = beta_q(0,k); //norm = denom(k);
      for (l=0; l<Nstates; l++) { beta_q(l,k) -= norm; }
    }

    //Calculate extrinsic output for each bit
    for (k=1; k<=block_length; k++) {
      kk = k-1;
      if (kk<ext_info_length) {
	nom = -QLLR_MAX;
	den = -QLLR_MAX;
	rp =  rec_parity(kk)/2;
	for (s_prim=0; s_prim<Nstates; s_prim++) {
	  if (output_parity( s_prim , 0 )) { exp_temp0 = -rp; } else { exp_temp0 = rp; }
	  if (output_parity( s_prim , 1 )) { exp_temp1 = -rp; } else { exp_temp1 = rp; }
	  nom = llrcalc.jaclog(nom, alpha_q(s_prim,kk) + exp_temp0 + beta_q(state_trans(s_prim,0),k) );
	  den = llrcalc.jaclog(den, alpha_q(s_prim,kk) + exp_temp1 + beta_q(state_trans(s_prim,1),k) );
	}
	extrinsic_output(kk) = nom - den;
      }
    }
  }

  void Rec_Syst_Conv_Code::set_llrcalc(LLR_calc_unit in_llrcalc)
  {
    llrcalc = in_llrcalc;
  }


} // namespace itpp