File: turbo.cpp

package info (click to toggle)
libitpp 4.0.4-2
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 7,520 kB
  • ctags: 6,341
  • sloc: cpp: 51,608; sh: 9,248; makefile: 636; fortran: 8
file content (752 lines) | stat: -rw-r--r-- 24,436 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
/*!
 * \file
 * \brief Implementation of a turbo encoder/decoder class
 * \author Pal Frenger. QLLR support by Erik G. Larsson.
 *
 * -------------------------------------------------------------------------
 *
 * IT++ - C++ library of mathematical, signal processing, speech processing,
 *        and communications classes and functions
 *
 * Copyright (C) 1995-2008  (see AUTHORS file for a list of contributors)
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 *
 * -------------------------------------------------------------------------
 */

#include <itpp/comm/turbo.h>


namespace itpp {

  void Turbo_Codec::set_parameters(ivec gen1, ivec gen2, int constraint_length, const ivec &interleaver_sequence,
				   int in_iterations, std::string in_metric, double in_logmax_scale_factor,
				   bool in_adaptive_stop,  LLR_calc_unit in_llrcalc)
  {
    //Set the input parameters:
    iterations          = in_iterations;
    interleaver_size    = interleaver_sequence.size();
    Nuncoded            = interleaver_size;
    logmax_scale_factor = in_logmax_scale_factor;
    adaptive_stop       = in_adaptive_stop;

    //Check the decoding metric
    if (in_metric=="LOGMAX") {
      metric = "LOGMAX";
    } else if (in_metric=="LOGMAP") {
      metric = "LOGMAP";
    } else if (in_metric=="MAP") {
      metric = "MAP";
    } else if (in_metric=="TABLE") {
      metric = "TABLE";
    } else {
      it_error("Turbo_Codec::set_parameters: The decoder metric must be either MAP, LOGMAP or LOGMAX");
    }

    if (logmax_scale_factor != 1.0) {
      it_assert(metric=="LOGMAX","Turbo_Codec::set_parameters: logmax_scale_factor can only be used together with LOGMAX decoding");
    }

    //The RSC Encoders:
    rscc1.set_generator_polynomials(gen1, constraint_length);
    rscc2.set_generator_polynomials(gen2, constraint_length);
    n1 = gen1.length()-1; //Number of parity bits from rscc1
    n2 = gen2.length()-1; //Number of parity bits from rscc2
    n_tot = 1 + n1 + n2;  //Total number of parity bits and systematic bits

    //Set the number of tail bits:
    m_tail = constraint_length - 1;

    //Calculate the number of coded bits per code-block:
    Ncoded = Nuncoded * n_tot + m_tail * (1 + n1) + m_tail * (1 + n2);

    //Set the interleaver sequence
    bit_interleaver.set_interleaver_depth(interleaver_size);
    float_interleaver.set_interleaver_depth(interleaver_size);
    bit_interleaver.set_interleaver_sequence(interleaver_sequence);
    float_interleaver.set_interleaver_sequence(interleaver_sequence);

    //Default value of the channel reliability scaling factor is 1
    Lc = 1.0;

    // LLR algebra table
    rscc1.set_llrcalc(in_llrcalc);
    rscc2.set_llrcalc(in_llrcalc);

  }

  void Turbo_Codec::set_interleaver(const ivec &interleaver_sequence)
  {
    interleaver_size = interleaver_sequence.size();
    Nuncoded = interleaver_size;

    //Calculate the number of coded bits per code-block:
    Ncoded = Nuncoded * n_tot + m_tail * (1 + n1) + m_tail * (1 + n2);

    //Set the interleaver sequence
    bit_interleaver.set_interleaver_depth(interleaver_size);
    float_interleaver.set_interleaver_depth(interleaver_size);
    bit_interleaver.set_interleaver_sequence(interleaver_sequence);
    float_interleaver.set_interleaver_sequence(interleaver_sequence);
  }

  void Turbo_Codec::set_metric(std::string in_metric, double in_logmax_scale_factor, LLR_calc_unit in_llrcalc)
  {
    logmax_scale_factor = in_logmax_scale_factor;

    //Check the decoding metric
    if (in_metric=="LOGMAX") {
      metric = "LOGMAX";
    } else if (in_metric=="LOGMAP") {
      metric = "LOGMAP";
    } else if (in_metric=="MAP") {
      metric = "MAP";
    } else if (in_metric=="TABLE") {
      metric = "TABLE";
    } else {
      it_error("Turbo_Codec::set_metric: The decoder metric must be either MAP, LOGMAP or LOGMAX");
    }

    rscc1.set_llrcalc(in_llrcalc);
    rscc2.set_llrcalc(in_llrcalc);
  }

  void Turbo_Codec::set_iterations(int in_iterations)
  {
    iterations = in_iterations;
  }

  void Turbo_Codec::set_adaptive_stop(bool in_adaptive_stop)
  {
    adaptive_stop = in_adaptive_stop;
  }

  void Turbo_Codec::set_awgn_channel_parameters(double in_Ec, double in_N0)
  {
    Ec = in_Ec;
    N0 = in_N0;
    Lc = 4.0 * std::sqrt(Ec)/N0;
  }

  void Turbo_Codec::set_scaling_factor(double in_Lc)
  {
    Lc = in_Lc;
  }


  void Turbo_Codec::encode(const bvec &input, bvec &output)
  {
    //Local variables:
    int i, k, j, no_blocks;
    int count;
    bvec input_bits, in1, in2, tail1, tail2, out;
    bmat parity1, parity2;

    //Initializations:
    no_blocks = input.length() / Nuncoded;
    output.set_size(no_blocks*Ncoded,false);

    //Set the bit counter to zero:
    count = 0;

    //Encode all code blocks:
    for (i=0; i<no_blocks; i++) {

      //Encode one block
      input_bits = input.mid(i*Nuncoded,Nuncoded);
      encode_block(input_bits, in1, in2, parity1, parity2);

      //The data part:
      for (k=0; k<Nuncoded; k++) {
	output(count) = in1(k); count++;                                //Systematic bits
	for (j=0; j<n1; j++) { output(count) = parity1(k,j); count++; } //Parity-1 bits
	for (j=0; j<n2; j++) { output(count) = parity2(k,j); count++; } //Parity-2 bits
      }

      //The first tail:
      for (k=0; k<m_tail; k++) {
	output(count) = in1(Nuncoded+k); count++;                                //First systematic tail bit
	for (j=0; j<n1; j++) { output(count) = parity1(Nuncoded+k,j); count++; } //Parity-1 tail bits
      }

      //The second tail:
      for (k=0; k<m_tail; k++) {
	output(count) = in2(Nuncoded+k); count++;                                //Second systematic tail bit
	for (j=0; j<n2; j++) { output(count) = parity2(Nuncoded+k,j); count++; } //Parity-2 tail bits
      }

    }

  }

  void Turbo_Codec::decode(const vec &received_signal, bvec &decoded_bits, const bvec &true_bits)
  {
    ivec nrof_used_iterations;
    decode(received_signal, decoded_bits, nrof_used_iterations, true_bits);
  }

  void Turbo_Codec::decode(const vec &received_signal, bvec &decoded_bits, ivec &nrof_used_iterations,
			   const bvec &true_bits)
  {

    if ( (n1==1) && (n2==1) && (metric!="MAP") ) {
      //This is a speed optimized decoder for R=1/3 (log domain metrics only)
      decode_n3(received_signal, decoded_bits, nrof_used_iterations, true_bits);
    } else {

      //Local variables:
      vec rec, rec_syst1, rec_syst2;
      mat rec_parity1, rec_parity2;
      bmat decoded_bits_i;
      int no_blocks, i, j, k, nrof_used_iterations_i;
      int count;
      bool CHECK_TRUE_BITS;

      //Initilaizations:
      no_blocks = received_signal.length() / Ncoded;
      decoded_bits.set_size(no_blocks * Nuncoded, false);
      decoded_bits_i.set_size(iterations, no_blocks * Nuncoded, false);
      rec_syst1.set_size(Nuncoded+m_tail,false);
      rec_syst2.set_size(Nuncoded+m_tail,false); rec_syst2.clear();
      rec_parity1.set_size(Nuncoded+m_tail,n1,false);
      rec_parity2.set_size(Nuncoded+m_tail,n2,false);
      nrof_used_iterations.set_size(no_blocks, false);

      //Check the vector true_bits:
      if (true_bits.size()>1) {
	it_assert(true_bits.size() == (Nuncoded * no_blocks),"Turbo_Codec::decode: Wrong size of input vectors");
	CHECK_TRUE_BITS = true;
      } else {
	CHECK_TRUE_BITS = false;
      }

      //Set the bit counter to zero:
      count = 0;

      //Itterate over all received code blocks:
      for (i=0; i<no_blocks; i++) {

	//The data part:
	for (k=0; k<Nuncoded; k++) {
	  rec_syst1(k) = received_signal(count); count++;                               //Systematic bit
	  for (j=0; j<n1; j++) { rec_parity1(k,j) = received_signal(count); count++; }  //Parity-1 bits
	  for (j=0; j<n2; j++) { rec_parity2(k,j) = received_signal(count); count++; }  //Parity-2 bits
	}

	//The first tail:
	for (k=0; k<m_tail; k++) {
	  rec_syst1(Nuncoded+k) = received_signal(count); count++;                               //Tail 1 systematic bit
	  for (j=0; j<n1; j++) { rec_parity1(Nuncoded+k,j) = received_signal(count); count++; }  //Tail 1 parity-1 bits
	}

	//The second tail:
	for (k=0; k<m_tail; k++) {
	  rec_syst2(Nuncoded+k) = received_signal(count); count++;                              //Tail2 systematic bit
	  for (j=0; j<n2; j++) { rec_parity2(Nuncoded+k,j) = received_signal(count); count++; } //Tali2 parity-2 bits
	}

	//Scale the input data if necessary:
	if (Lc != 1.0) {
	  rec_syst1 *= Lc;
	  rec_syst2 *= Lc;
	  rec_parity1 *= Lc;
	  rec_parity2 *= Lc;
	}

	//Decode the block:
	if (CHECK_TRUE_BITS) {
	  decode_block(rec_syst1, rec_syst2, rec_parity1, rec_parity2, decoded_bits_i,
		       nrof_used_iterations_i, true_bits.mid(i*Nuncoded,Nuncoded) );
	  nrof_used_iterations(i) = nrof_used_iterations_i;
	} else {
	  decode_block(rec_syst1, rec_syst2, rec_parity1, rec_parity2, decoded_bits_i, nrof_used_iterations_i);
	  nrof_used_iterations(i) = nrof_used_iterations_i;
	}

	//Put the decoded bits in the output vector:
	decoded_bits.replace_mid(i*Nuncoded, decoded_bits_i.get_row(iterations-1));

      }

    }

  }

  void Turbo_Codec::encode_block(const bvec &input, bvec &in1, bvec &in2, bmat &parity1, bmat &parity2)
  {
    //Local variables:
    bvec tail1, tail2, interleaved_input;

    //Error check:
    it_assert(input.length() == Nuncoded,"Turbo_Codec::encode_block: Parameter error in Nuncoded.");

    //Initializations:
    tail1.set_size(m_tail, false);                tail1.clear();
    tail2.set_size(m_tail, false);                tail2.clear();
    parity1.set_size(Nuncoded+m_tail, n1, false); parity1.clear();
    parity2.set_size(Nuncoded+m_tail, n2, false); parity2.clear();
    interleaved_input.set_size(Nuncoded, false);  interleaved_input.clear();

    //The first encoder:
    rscc1.encode_tail(input, tail1, parity1);

    //The interleaver:
    bit_interleaver.interleave(input,interleaved_input);

    //The second encoder:
    rscc2.encode_tail(interleaved_input, tail2, parity2);

    //The input vectors used to the two constituent encoders:
    in1 = concat(input,tail1);
    in2 = concat(interleaved_input,tail2);

  }

  void Turbo_Codec::decode_block(const vec &rec_syst1, const vec &rec_syst2, const mat &rec_parity1,
				 const mat &rec_parity2, bmat &decoded_bits_i, int &nrof_used_iterations_i,
				 const bvec &true_bits)
  {
    //Local variables:
    int i;
    int count, l, k;
    vec extrinsic_input, extrinsic_output, int_rec_syst1, int_rec_syst, tmp;
    vec deint_rec_syst2, rec_syst, sub_rec_syst, Le12, Le21, Le12_int, Le21_int, L, tail1, tail2;
    bool CHECK_TRUE_BITS, CONTINUE;

    //Size initializations:
    decoded_bits_i.set_size(iterations, Nuncoded, false);
    Le12.set_size(Nuncoded+m_tail, false);
    Le21.set_size(Nuncoded+m_tail, false); Le21.zeros();

    //Calculate the interleaved and the deinterleaved sequences:
    float_interleaver.interleave(rec_syst1.left(interleaver_size),int_rec_syst1);
    float_interleaver.deinterleave(rec_syst2.left(interleaver_size),deint_rec_syst2);

    //Combine the results from rec_syst1 and rec_syst2 (in case some bits are transmitted several times)
    rec_syst = rec_syst1.left(interleaver_size) + deint_rec_syst2;
    int_rec_syst = rec_syst2.left(interleaver_size) + int_rec_syst1;

    //Get the two tails
    tail1 = rec_syst1.right(m_tail);
    tail2 = rec_syst2.right(m_tail);

    //Form the input vectors (including tails) to the two decoders:
    rec_syst = concat(rec_syst,tail1);
    int_rec_syst = concat(int_rec_syst,tail2);

    // Check the vector true_bits
    if (true_bits.size()>1) {
      it_assert(true_bits.size()==Nuncoded,"Turbo_Codec::decode_block: Illegal size of input vector true_bits");
      CHECK_TRUE_BITS = true;
    } else {
      CHECK_TRUE_BITS = false;
    }

    if (CHECK_TRUE_BITS) {
      it_assert(adaptive_stop==false,
		"Turbo_Codec::decode_block: You can not stop iterations both adaptively and on true bits");
    }

    // Do the iterative decoding:
    nrof_used_iterations_i = iterations;
    for (i=0; i<iterations; i++) {

      // Decode Code 1
      if (metric=="MAP") {
	rscc1.map_decode(rec_syst, rec_parity1, Le21, Le12, true);
      } else if ((metric=="LOGMAX") || (metric=="LOGMAP") || (metric=="TABLE")) {
	rscc1.log_decode(rec_syst, rec_parity1, Le21, Le12, true, metric);
	if (logmax_scale_factor != 1.0) {
	  Le12 *= logmax_scale_factor;
	}
      } else {
	it_error("Turbo_Codec::decode_block: Illegal metric value");
      }

      // Interleave the extrinsic information:
      float_interleaver.interleave(Le12.left(interleaver_size),tmp);
      Le12_int = concat(tmp,zeros(Le12.size()-interleaver_size));

      // Decode Code 2
      if (metric=="MAP") {
	rscc2.map_decode(int_rec_syst, rec_parity2, Le12_int, Le21_int, true);
      } else if ((metric=="LOGMAX") || (metric=="LOGMAP")  || (metric=="TABLE")) {
	rscc2.log_decode(int_rec_syst, rec_parity2, Le12_int, Le21_int, true, metric);
	if (logmax_scale_factor != 1.0) {
	  Le21_int *= logmax_scale_factor;
	}
      } else {
	it_error("Turbo_Codec::decode_block: Illegal metric value");
      }

      // De-interleave the extrinsic information:
      float_interleaver.deinterleave(Le21_int.left(interleaver_size),tmp);
      Le21 = concat(tmp,zeros(Le21_int.size()-interleaver_size));

      // Take bit decisions
      L = rec_syst + Le21 + Le12;
      count = 0;
      for (l=0; l<Nuncoded; l++) {
	(L(l)>0.0) ? (decoded_bits_i(i,count) = bin(0)) : (decoded_bits_i(i,count) = bin(1));
	count++;
      }

      //Check if it is possible to stop iterating early:
      CONTINUE = true;
      if (i<(iterations-1)) {

	if (CHECK_TRUE_BITS) {
	  CONTINUE = false;
	  for (k=0; k<Nuncoded; k++) { if (true_bits(k) != decoded_bits_i(i,k)) { CONTINUE = true; break; } }
	}

	if ((adaptive_stop) && (i>0)) {
	  CONTINUE = false;
	  for (k=0; k<Nuncoded; k++) { if (decoded_bits_i(i-1,k) != decoded_bits_i(i,k)) { CONTINUE = true; break; } }
	}

      }

      //Check if iterations shall continue:
      if (CONTINUE==false) {
	//Copy the results from current iteration to all following iterations:
	for (k=(i+1); k<iterations; k++) {
	  decoded_bits_i.set_row(k, decoded_bits_i.get_row(i) );
	  nrof_used_iterations_i = i+1;
	}
	break;
      }

    }

  }

  void Turbo_Codec::decode_n3(const vec &received_signal, bvec &decoded_bits, ivec &nrof_used_iterations,
			      const bvec &true_bits)
  {
    //Local variables:
    vec rec, rec_syst1, int_rec_syst1, rec_syst2;
    vec rec_parity1, rec_parity2;
    vec extrinsic_input, extrinsic_output, Le12, Le21, Le12_int, Le21_int, L;
    bvec temp_decoded_bits;
    int no_blocks, i, j, k, l, nrof_used_iterations_i;
    int count, count_out;
    bool CHECK_TRUE_BITS, CONTINUE;

    //Initializations:
    no_blocks = received_signal.length() / Ncoded;
    decoded_bits.set_size(no_blocks * Nuncoded, false);
    rec_syst1.set_size(Nuncoded+m_tail,false);
    rec_syst2.set_size(Nuncoded+m_tail,false); rec_syst2.clear();
    rec_parity1.set_size(Nuncoded+m_tail,false);
    rec_parity2.set_size(Nuncoded+m_tail,false);
    temp_decoded_bits.set_size(Nuncoded,false);
    decoded_bits_previous_iteration.set_size(Nuncoded,false);
    nrof_used_iterations.set_size(no_blocks, false);

    //Size initializations:
    Le12.set_size(Nuncoded, false);
    Le21.set_size(Nuncoded, false);

    //Set the bit counter to zero:
    count = 0;
    count_out = 0;

    // Check the vector true_bits
    if (true_bits.size()>1) {
      it_assert(true_bits.size()==Nuncoded*no_blocks,"Turbo_Codec::decode_n3: Illegal size of input vector true_bits");
      CHECK_TRUE_BITS = true;
    } else {
      CHECK_TRUE_BITS = false;
    }

    if (CHECK_TRUE_BITS) {
      it_assert(adaptive_stop==false,
		"Turbo_Codec::decode_block: You can not stop iterations both adaptively and on true bits");
    }

    //Iterate over all received code blocks:
    for (i=0; i<no_blocks; i++) {

      //Reset extrinsic data:
      Le21.zeros();

      //The data part:
      for (k=0; k<Nuncoded; k++) {
	rec_syst1(k)   = received_signal(count); count++; //Systematic bit
	rec_parity1(k) = received_signal(count); count++; //Parity-1 bits
	rec_parity2(k) = received_signal(count); count++; //Parity-2 bits
      }

      //The first tail:
      for (k=0; k<m_tail; k++) {
	rec_syst1(Nuncoded+k)   = received_signal(count); count++; //Tail 1 systematic bit
	rec_parity1(Nuncoded+k) = received_signal(count); count++; //Tail 1 parity-1 bits
      }

      //The second tail:
      for (k=0; k<m_tail; k++) {
	rec_syst2(Nuncoded+k)   = received_signal(count); count++; //Tail2 systematic bit
	rec_parity2(Nuncoded+k) = received_signal(count); count++; //Tali2 parity-2 bits
      }

      float_interleaver.interleave(rec_syst1.left(Nuncoded),int_rec_syst1);
      rec_syst2.replace_mid(0,int_rec_syst1);

      //Scale the input data if necessary:
      if (Lc != 1.0) {
	rec_syst1   *= Lc;
	rec_syst2   *= Lc;
	rec_parity1 *= Lc;
	rec_parity2 *= Lc;
      }

      //Decode the block:
      CONTINUE = true;
      nrof_used_iterations_i = iterations;
      for (j=0; j<iterations; j++) {

	rscc1.log_decode_n2(rec_syst1, rec_parity1, Le21, Le12, true, metric);
	if (logmax_scale_factor!=1.0) { Le12 *= logmax_scale_factor; }
	float_interleaver.interleave(Le12,Le12_int);

	rscc2.log_decode_n2(rec_syst2, rec_parity2, Le12_int, Le21_int, true, metric);
	if (logmax_scale_factor!=1.0) { Le21_int *= logmax_scale_factor; }
	float_interleaver.deinterleave(Le21_int,Le21);

	if (adaptive_stop) {
	  L = rec_syst1.left(Nuncoded) + Le21.left(Nuncoded) + Le12.left(Nuncoded);
	  for (l=0; l<Nuncoded; l++) { (L(l)>0.0) ? (temp_decoded_bits(l) = bin(0)) : (temp_decoded_bits(l) = bin(1)); }
	  if (j==0) { decoded_bits_previous_iteration = temp_decoded_bits; } else {
	    if (temp_decoded_bits==decoded_bits_previous_iteration ) {
	      CONTINUE = false;
	    } else if (j<(iterations-1)) {
	      decoded_bits_previous_iteration = temp_decoded_bits;
	    }
	  }
	}

	if (CHECK_TRUE_BITS) {
	  L = rec_syst1.left(Nuncoded) + Le21.left(Nuncoded) + Le12.left(Nuncoded);
	  for (l=0; l<Nuncoded; l++) { (L(l)>0.0) ? (temp_decoded_bits(l) = bin(0)) : (temp_decoded_bits(l) = bin(1)); }
	  if (temp_decoded_bits == true_bits.mid(i*Nuncoded,Nuncoded)) {
	    CONTINUE = false;
	  }
	}

	if (CONTINUE==false) { nrof_used_iterations_i = j+1; break; }

      }

      //Take final bit decisions
      L = rec_syst1.left(Nuncoded) + Le21.left(Nuncoded) + Le12.left(Nuncoded);
      for (l=0; l<Nuncoded; l++) {
	(L(l)>0.0) ? (decoded_bits(count_out) = bin(0)) : (decoded_bits(count_out) = bin(1)); count_out++;
      }

      nrof_used_iterations(i) = nrof_used_iterations_i;

    }

  }

  ivec wcdma_turbo_interleaver_sequence(int interleaver_size)
  {
    const int MAX_INTERLEAVER_SIZE = 5114;
    const int MIN_INTERLEAVER_SIZE = 40;
    int K;  //Interleaver size
    int R;  //Number of rows of rectangular matrix
    int C;  //Number of columns of rectangular matrix
    int p;  //Prime number
    int v;  //Primitive root
    ivec s; //Base sequence for intra-row permutation
    ivec q; //Minimum prime integers
    ivec r; //Permuted prime integers
    ivec T; //Inter-row permutation pattern
    imat U; //Intra-row permutation patter
    ivec I; //The interleaver sequence
    ivec primes, roots, Pat1, Pat2, Pat3, Pat4, Isort;
    int i, j, qj, temp, row, col, index, count;

    if (interleaver_size > MAX_INTERLEAVER_SIZE) {

      I = sort_index(randu(interleaver_size));
      return I;

    } else {

      p = 0;
      v = 0;

      //Check the range of the interleaver size:
      it_assert(interleaver_size <= MAX_INTERLEAVER_SIZE,"wcdma_turbo_interleaver_sequence: The interleaver size is to large");
      it_assert(interleaver_size >= MIN_INTERLEAVER_SIZE,"wcdma_turbo_interleaver_sequence: The interleaver size is to small");

      K = interleaver_size;

      //Definitions of primes and associated primitive roots:
      primes = "2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211 223 227 229 233 239 241 251 257";
      roots = "0 0 0 3 2 2 3 2 5 2 3 2 6 3 5 2 2 2 2 7 5 3 2 3 5 2 5 2 6 3 3 2 3 2 2 6 5 2 5 2 2 2 19 5 2 3 2 3 2 6 3 7 7 6 3";

      //Determine R
      if ((K>=40) && (K<=159)) {
	R = 5;
      } else if ( ((K>=160)&&(K<=200)) || ((K>=481)&&(K<=530)) ) {
	R = 10;
      } else {
	R = 20;
      }

      //Determine C
      if ((K>=481)&&(K<=530)) {
	p = 53;
	v = 2;
	C = p;
      } else {
	//Find minimum prime p such that (p+1) - K/R >= 0 ...
	for (i=0; i<primes.length(); i++) {
	  if ( ( double(primes(i)+1) - double(K)/double(R) ) >= 0.0 ) {
	    p = primes(i);
	    v = roots(i);
	    break;
	  }
	}
	//... and etermine C such that
	if ( ( double(p) - double(K)/double(R) ) >= 0.0 ) {
	  if ( ( double(p) - 1.0 - double(K)/double(R) ) >= 0.0 ) {
	    C = p-1;
	  } else {
	    C = p;
	  }
	} else {
	  C = p+1;
	}
      }

      //Construct the base sequencs s for intra-row permutaions
      s.set_size(p-1,false);
      s.clear();
      s(0) = 1;
      for (i=1; i<=(p-2); i++) {
	s(i) = mod(v * s(i-1), p);
      }

      //Let q(0) = 1 be the first prime integer in {q(j)}, and select the consecutive
      //minimum prime integers {q(j)}, j = 1, 2, ..., (R-1) such that gcd( q(j), p-1) == 1, q(j) > 6, and q(j) > q(j-1)
      q.set_size(R, false);
      q.clear();
      q(0) = 1;
      for (j=1; j<=(R-1); j++) {
	for (i=0; i<primes.length(); i++) {
	  qj = primes(i);
	  if ( (qj>6) && (qj>q(j-1)) ) {
	    if (gcd(qj, p-1) == 1) {
	      q(j) = qj;
	      break;
	    }
	  }
	}
      }

      //Definitions of Pat1, Pat2, Pat3, and Pat4:
      Pat1 = "19 9 14 4 0 2 5 7 12 18 10 8 13 17 3 1 16 6 15 11";
      Pat2 = "19 9 14 4 0 2 5 7 12 18 16 13 17 15 3 1 6 11 8 10";
      Pat3 = "9 8 7 6 5 4 3 2 1 0";
      Pat4 = "4 3 2 1 0";

      //T(j) is the inter-row permutation patters defined as one of the following four
      //kinds of patterns: Pat1, Pat2, Pat3, and Pat4 depending on the number of input bits K
      if (K>=3211) {
	T = Pat1;
      } else if (K>=3161) {
	T = Pat2;
      } else if (K>=2481) {
	T = Pat1;
      } else if (K>=2281) {
	T = Pat2;
      } else if (K>=531) {
	T = Pat1;
      } else if (K>=481) {
	T = Pat3;
      } else if (K>=201) {
	T = Pat1;
      } else if (K>=160) {
	T = Pat3;
      } else {
	T = Pat4;
      }

      //Permute {q(j)} to make {r(j)} such that r(T(j)) = q(j), j = 0, 1, ..., (R-1),
      //where T(j) indicates the original row position of the j-th permuted row
      r.set_size(R,false);
      r.clear();
      for (j=0; j<=(R-1); j++) {
	r( T(j) ) = q(j);
      }

      //U(j,i) is the input bit position of i-th output after the permutation of j-th row
      //Perform the j-th (j=0, 1, 2, ..., (R-1)) intra-row permutation as
      U.set_size(R,C,false);
      U.clear();
      if (C==p) {
	for (j=0; j<=(R-1); j++) {
	  for (i=0; i<=(p-2); i++) {
	    U(j,i) = s(mod(i*r(j), p-1));
	  }
	  U(j,p-1) = 0;
	}
      } else if (C==(p+1)) {
	for (j=0; j<=(R-1); j++) {
	  for (i=0; i<=(p-2); i++) {
	    U(j,i) = s(mod(i*r(j), p-1));
	  }
	  U(j,p-1) = 0;
	  U(j,p) = p;
	}
	if (K == (C*R)) {
	  temp = U(R-1,p);
	  U(R-1,p) = U(R-1,0);
	  U(R-1,0) = temp;
	}
      } else if (C==(p-1)) {
	for (j=0; j<=(R-1); j++) {
	  for (i=0; i<=(p-2); i++) {
	    U(j,i) = s(mod(i*r(j), p-1)) - 1;
	  }
	}
      }

      //Calculate the interleaver sequence:
      I.set_size(K, false);
      I.clear();
      count = 0;
      for (i=0; i<C; i++) {
	for (j=0; j<R; j++) {
	  row = T(j);
	  col = U(row,i);
	  index = row * C + col;
	  if (index < K) {
	    I(count) = index;
	    count++;
	  }
	}
      }

      return I;
    }
  }

} // namespace itpp