1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
|
/*!
* \file
* \brief Include file for the IT++ statistics module
* \author Adam Piatyszek and Conrad Sanderson
*
* -------------------------------------------------------------------------
*
* IT++ - C++ library of mathematical, signal processing, speech processing,
* and communications classes and functions
*
* Copyright (C) 1995-2008 (see AUTHORS file for a list of contributors)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* -------------------------------------------------------------------------
*/
#ifndef ITSTAT_H
#define ITSTAT_H
/*!
* \defgroup stat Statistics Module
* @{
*/
//! \defgroup histogram Histogram
//! \defgroup statistics Miscellaneous Statistics Functions
/*! \defgroup MOG Mixture of Gaussians (MOG)
\brief Classes and functions for modelling multivariate data as a Mixture of Gaussians
\author Conrad Sanderson
The following example shows how to model data:
\code
Array<vec> X;
// ... fill X with vectors ...
int K = 3; // specify the number of Gaussians
int D = 10; // specify the dimensionality of vectors
MOG_diag model(K,D);
MOG_diag_kmeans(model, X, 10, 0.5, true, true); // initial optimisation using 10 iterations of k-means
MOG_diag_ML(model, X, 10, 0.0, 0.0, true); // final optimisation using 10 iterations of ML version of EM
double avg = model.avg_log_lhood(X); // find the average log likelihood of X
\endcode
See also the tutorial section for a more elaborate example.
*/
/*!
* @}
*/
#include <itpp/itbase.h>
#include <itpp/stat/histogram.h>
#include <itpp/stat/misc_stat.h>
#include <itpp/stat/mog_generic.h>
#include <itpp/stat/mog_diag.h>
#include <itpp/stat/mog_diag_kmeans.h>
#include <itpp/stat/mog_diag_em.h>
#endif // #ifndef ITSTAT_H
|