1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
|
/*!
* \file
* \brief Filter design functions
* \author Tony Ottosson
*
* -------------------------------------------------------------------------
*
* IT++ - C++ library of mathematical, signal processing, speech processing,
* and communications classes and functions
*
* Copyright (C) 1995-2008 (see AUTHORS file for a list of contributors)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* -------------------------------------------------------------------------
*/
#include <itpp/signal/filter_design.h>
#include <itpp/signal/poly.h>
#include <itpp/signal/filter.h>
#include <itpp/signal/transforms.h>
#include <itpp/base/math/elem_math.h>
#include <itpp/base/algebra/ls_solve.h>
#include <itpp/base/matfunc.h>
#include <itpp/base/specmat.h>
#include <itpp/base/math/trig_hyp.h>
#include <itpp/base/converters.h>
namespace itpp {
void polystab(const vec &a, vec &out)
{
cvec r;
roots(a, r);
for (int i=0; i<r.size(); i++) {
if (abs(r(i)) > 1)
r(i) = std::complex<double>(1.0)/conj(r(i));
}
out = real(std::complex<double>(a(0)) * poly(r));
}
void polystab(const cvec &a, cvec &out)
{
cvec r;
roots(a, r);
for (int i=0; i<r.size(); i++) {
if (abs(r(i)) > 1)
r(i) = std::complex<double>(1.0)/conj(r(i));
}
out = a(0) * poly(r);
}
// ----------------------- freqz() ---------------------------------------------------------
void freqz(const cvec &b, const cvec &a, const int N, cvec &h, vec &w)
{
w = pi*linspace(0, N-1, N)/double(N);
cvec ha, hb;
hb = fft( b, 2*N );
hb = hb(0, N-1);
ha = fft( a, 2*N );
ha = ha(0, N-1);
h = elem_div(hb, ha);
}
cvec freqz(const cvec &b, const cvec &a, const int N)
{
cvec h;
vec w;
freqz(b, a, N, h, w);
return h;
}
cvec freqz(const cvec &b, const cvec &a, const vec &w)
{
int la = a.size(), lb = b.size(), k = std::max(la, lb);
cvec h, ha, hb;
// Evaluate the nominator and denominator at the given frequencies
hb = polyval( zero_pad(b, k), to_cvec(cos(w), sin(w)) );
ha = polyval( zero_pad(a, k), to_cvec(cos(w), sin(w)) );
h = elem_div(hb, ha);
return h;
}
void freqz(const vec &b, const vec &a, const int N, cvec &h, vec &w)
{
w = pi*linspace(0, N-1, N)/double(N);
cvec ha, hb;
hb = fft_real( b, 2*N );
hb = hb(0, N-1);
ha = fft_real( a, 2*N );
ha = ha(0, N-1);
h = elem_div(hb, ha);
}
cvec freqz(const vec &b, const vec &a, const int N)
{
cvec h;
vec w;
freqz(b, a, N, h, w);
return h;
}
cvec freqz(const vec &b, const vec &a, const vec &w)
{
int la = a.size(), lb = b.size(), k = std::max(la, lb);
cvec h, ha, hb;
// Evaluate the nominator and denominator at the given frequencies
hb = polyval( zero_pad(b, k), to_cvec(cos(w), sin(w)) );
ha = polyval( zero_pad(a, k), to_cvec(cos(w), sin(w)) );
h = elem_div(hb, ha);
return h;
}
void filter_design_autocorrelation(const int N, const vec &f, const vec &m, vec &R)
{
it_assert(f.size() == m.size(), "filter_design_autocorrelation: size of f and m vectors does not agree");
int N_f = f.size();
it_assert(f(0) == 0.0, "filter_design_autocorrelation: first frequency must be 0.0");
it_assert(f(N_f-1) == 1.0, "filter_design_autocorrelation: last frequency must be 1.0");
// interpolate frequency-response
int N_fft = 512;
vec m_interp(N_fft+1);
// unused variable:
// double df_interp = 1.0/double(N_fft);
m_interp(0) = m(0);
double inc;
int jstart = 0, jstop;
for (int i=0; i<N_f-1; i++) {
// calculate number of points to the next frequency
jstop = floor_i( f(i+1)*(N_fft+1) ) - 1;
//std::cout << "jstart=" << jstart << "jstop=" << jstop << std::endl;
for (int j=jstart; j<=jstop; j++) {
inc = double(j-jstart)/double(jstop-jstart);
m_interp(j) = m(i)*(1-inc) + m(i+1)*inc;
}
jstart = jstop+1;
}
vec S = sqr(concat( m_interp, reverse(m_interp(2,N_fft)) )); // create a complete frequency response with also negative frequencies
R = ifft_real(to_cvec(S)); // calculate correlation
R = R.left(N);
}
// Calculate the AR coefficients of order \c n of the ARMA-process defined by the autocorrelation R
// using the deternined modified Yule-Walker method
// maxlag determines the size of the system to solve N>= n.
// If N>m then the system is overdetermined and a least squares solution is used.
// as a rule of thumb use N = 4*n
void modified_yule_walker(const int m, const int n, const int N, const vec &R, vec &a)
{
it_assert(m>0, "modified_yule_walker: m must be > 0");
it_assert(n>0, "modified_yule_walker: n must be > 0");
it_assert(N <= R.size(), "modified_yule_walker: autocorrelation function too short");
// create the modified Yule-Walker equations Rm * a = - rh
// see eq. (3.7.1) in Stoica and Moses, Introduction to spectral analysis
int M = N - m - 1;
mat Rm;
if(m-n+1 < 0)
Rm= toeplitz( R(m, m+M-1), reverse(concat( R(1,std::abs(m-n+1)), R(0,m) ) ) );
else
Rm= toeplitz( R(m, m+M-1), reverse(R(m-n+1,m)) );
vec rh = - R(m+1, m+M);
// solve overdetermined system
a = backslash(Rm, rh);
// prepend a_0 = 1
a = concat(1.0, a);
// stabilize polynomial
a = polystab(a);
}
void arma_estimator(const int m, const int n, const vec &R, vec &b, vec &a)
{
it_assert(m>0, "arma_estimator: m must be > 0");
it_assert(n>0, "arma_estimator: n must be > 0");
it_assert(2*(m+n)<=R.size(), "arma_estimator: autocorrelation function too short");
// windowing the autocorrelation
int N = 2*(m+n);
vec Rwindow = elem_mult(R.left(N), 0.54 + 0.46*cos( pi*linspace(0.0, double(N-1), N)/double(N-1) ) ); // Hamming windowing
// calculate the AR part using the overdetmined Yule-Walker equations
modified_yule_walker(m, n, N, Rwindow, a);
// --------------- Calculate MA part --------------------------------------
// use method in ref [2] section VII.
vec r_causal = Rwindow;
r_causal(0) *= 0.5;
vec h_inv_a = filter(1, a, concat(1.0, zeros(N-1))); // see eq (50) of [2]
mat H_inv_a = toeplitz(h_inv_a, concat(1.0, zeros(m)));
vec b_causal = backslash(H_inv_a, r_causal);
// calculate the double-sided spectrum
int N_fft = 256;
vec H = 2.0*real(elem_div(fft_real(b_causal, N_fft), fft_real(a, N_fft))); // calculate spectrum
// Do weighting and windowing in cepstrum domain
cvec cepstrum = log(to_cvec(H));
cvec q = ifft(cepstrum);
// keep only causal part of spectrum (windowing)
q.set_subvector(N_fft/2, N_fft-1, zeros_c(N_fft/2) );
q(0) *= 0.5;
cvec h = ifft(exp(fft(q))); // convert back to frequency domain, from cepstrum and do inverse transform to calculate impulse response
b = real(backslash(to_cmat(H_inv_a), h(0,N-1))); // use Shank's method to calculate b coefficients
}
void yulewalk(const int N, const vec &f, const vec &m, vec &b, vec &a)
{
it_assert(f.size() == m.size(), "yulewalk: size of f and m vectors does not agree");
int N_f = f.size();
it_assert(f(0) == 0.0, "yulewalk: first frequency must be 0.0");
it_assert(f(N_f-1) == 1.0, "yulewalk: last frequency must be 1.0");
vec R;
filter_design_autocorrelation(4*N, f, m, R);
arma_estimator(N, N, R, b, a);
}
} // namespace itpp
|