1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
|
/*!
* \file
* \brief Definitions of signal processing functions
* \author Tony Ottosson, Thomas Eriksson, Pal Frenger, and Tobias Ringstrom
*
* -------------------------------------------------------------------------
*
* IT++ - C++ library of mathematical, signal processing, speech processing,
* and communications classes and functions
*
* Copyright (C) 1995-2008 (see AUTHORS file for a list of contributors)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* -------------------------------------------------------------------------
*/
#ifndef SIGFUN_H
#define SIGFUN_H
#include <itpp/base/vec.h>
namespace itpp {
/*!
* \addtogroup sigproc
* @{
*/
/*!
\brief Cross-correlation calculation
\c z=xcorr(x,y,max_lag), where \a x and \a y are length \a M vectors \a (M>1), returns the length \c 2*max_lag+1
cross-correlation sequence \a z. (lags: \c -max_lag,...,0,...,max_lag)
For \c max_lag=-1 the cross-correlation sequence is of length \c 2*M-1, i.e., the cross-correlation for all possible lags.
Scaling options \a scaleopt:
\arg \a none \c => No scaling of the cross-correlation vector
\arg \a biased \c => Scales the cross-correlation vector by \c 1/M
\arg \a unbiased \c => Scales the cross-correlation vector by \c 1/(M-abs(lag))
\arg \a coeff \c => Normalises the cross-correlation to 1 for zero lag.
\note \c max_lag \c <= \c M-1
\note If \c x and \c y are of different length, the shortest one is zero-padded
\param x (Input) Vector of samples
\param y (Input) Vector of samples
\param out (Output) The cross correlation between \a x and \a y.
\param max_lag (Input) Maximum lag for which the cross-correlation is calculated. The output vector is of size \c 2*maxlag+1.
Default value: \c max_lag=-1 calculates the cross-correlations for all possible lags
\param scaleopt (Input) Indicates how the cross-correlation function should be scaled. Default value: \c "none" indicates that no scaling is done
@{
*/
void xcorr_old(const vec &x, const vec &y, vec &out, const int max_lag=-1, const std::string scaleopt="none");
void xcorr(const vec &x, const vec &y, vec &out, const int max_lag=-1, const std::string scaleopt="none");
/*! @} */
/*!
\brief Cross-correlation calculation
\c z=xcorr(x,y,max_lag), where \a x and \a y are length \a M vectors \a (M>1), returns the length \c 2*max_lag+1
cross-correlation sequence \a z. (lags: \c -max_lag,...,0,...,max_lag)
For \c max_lag=-1 the cross-correlation sequence is of length \c 2*M-1, i.e., the cross-correlation for all possible lags.
Scaling options \a scaleopt:
\arg \a none \c => No scaling of the cross-correlation vector
\arg \a biased \c => Scales the cross-correlation vector by \c 1/M
\arg \a unbiased \c => Scales the cross-correlation vector by \c 1/(M-abs(lag))
\arg \a coeff \c => Normalises the cross-correlation to 1 for zero lag.
\note \c max_lag \c <= \c M-1
\note If \c x and \c y are of different length, the shortest one is zero-padded
\param x (Input) Vector of samples
\param y (Input) Vector of samples
\param max_lag (Input) Maximum lag for which the cross-correlation is calculated. The output vector is of size \c 2*maxlag+1.
Default value: \c max_lag=-1 calculates the cross-correlations for all possible lags
\param scaleopt (Input) Indicates how the cross-correlation function should be scaled. Default
value: \c "none" indicates that no scaling is done
\returns The cross correlation between \a x and \a y.
@{
*/
vec xcorr_old(const vec &x, const vec &y, const int max_lag=-1, const std::string scaleopt="none");
vec xcorr(const vec &x, const vec &y, const int max_lag=-1, const std::string scaleopt="none");
/*! @} */
/*!
\brief Cross Correlation
\code r = xcorr(x,y) \endcode returns the cross-correlation vector \b r.
*/
cvec xcorr(const cvec &x, const cvec &y,const int max_lag=-1,const std::string scaleopt="none");
/*!
\brief Auto-correlation calculation
\c z=xcorr(x,max_lag), where \a x and is a length \a M vector \a (M>1), returns the length \c 2*max_lag+1 auto-correlation
sequence \a z. (lags: \c -max_lag,...,0,...,max_lag)
For \c max_lag=-1 the auto-correlation sequence is of length \c 2*M-1, i.e., the cross correlation for all possible lags.
Scaling options \a scaleopt:
\arg \a none \c => No scaling of the auto-correlation vector
\arg \a biased \c => Scales the auto-correlation vector by \c 1/M
\arg \a unbiased \c => Scales the auto-correlation vector by \c 1/(M-abs(lag))
\arg \a coeff \c => Normalises the auto-correlation so that \c acf(x)=1 for zero lag.
\note \c max_lag \c <= \c M-1
\param x (Input) Vector of samples
\param max_lag (Input) Maximum lag for which the auto-correlation is calculated. The output vector is of size \c 2*maxlag+1.
Default value \c max_lag=-1 calculates the auto-correlations for all possible lags.
\param scaleopt (Input) Indicates how the auto-correlation function should be scaled.
Default value: \c "none" indicates that no scaling is done.
\returns The auto-correlation of \a x.
@{
*/
vec xcorr_old(const vec &x, const int max_lag=-1, const std::string scaleopt="none");
vec xcorr(const vec &x, const int max_lag=-1, const std::string scaleopt="none");
/*! @} */
/*!
\brief Cross Correlation
\code r = xcorr(x) \endcode returns the auto-correlation vecotr \b r.
*/
cvec xcorr(const cvec &x, const int max_lag=-1,const std::string scaleopt="none");
/*!
\brief Cross Correlation
\code xcorr(x,y,out) \endcode Computes the cross-correlatin and returns in vector \b out
*/
void xcorr(const cvec &x, const cvec &y, cvec &out, const int max_lag=-1,const std::string scaleopt="none",
bool autoflag=true);
/*!
\brief Covariance matrix calculation
Calculates the covariance matrix of the observations in the matrix \f$X\f$. Each
row is an observation and each column represents a variable.
The covariance is normalized with the number of observations \f$N\f$.
The mean value is removed before calculation.
Set is_zero_mean if X already has zero mean.
*/
mat cov(const mat &X, bool is_zero_mean=false);
//vec cov(const vec &x, short order);
/*!
\brief Power spectrum calculation
Calculates the power spectrum using the Welch method and a Hanning window.
*/
vec spectrum(const vec &v, int nfft=256, int noverlap=0);
/*!
\brief Power spectrum calculation
Calculates the power spectrum using using the Welch method and the supplied window w.
*/
vec spectrum(const vec &v, const vec &w, int noverlap=0);
/*!
\brief Power spectrum calculation of a filter
Calculates the power spectrum of a filter with transfer function a(z)
*/
vec filter_spectrum(const vec &a, int nfft=256);
/*!
\brief Power spectrum calculation of a filter
Calculates the power spectrum of a filter with transfer function a(z)/b(z)
*/
vec filter_spectrum(const vec &a, const vec &b, int nfft=256);
/*! @} */
} // namespace itpp
#endif // #ifndef SIGFUN_H
|