File: sigfun.h

package info (click to toggle)
libitpp 4.0.4-2
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 7,520 kB
  • ctags: 6,341
  • sloc: cpp: 51,608; sh: 9,248; makefile: 636; fortran: 8
file content (203 lines) | stat: -rw-r--r-- 7,892 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
/*!
 * \file
 * \brief Definitions of signal processing functions
 * \author Tony Ottosson, Thomas Eriksson, Pal Frenger, and Tobias Ringstrom
 *
 * -------------------------------------------------------------------------
 *
 * IT++ - C++ library of mathematical, signal processing, speech processing,
 *        and communications classes and functions
 *
 * Copyright (C) 1995-2008  (see AUTHORS file for a list of contributors)
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 *
 * -------------------------------------------------------------------------
 */

#ifndef SIGFUN_H
#define SIGFUN_H

#include <itpp/base/vec.h>


namespace itpp {

  /*!
   * \addtogroup sigproc
   * @{
   */

  /*!
    \brief Cross-correlation calculation

    \c z=xcorr(x,y,max_lag), where \a x and \a y are length \a M vectors \a (M>1), returns the length \c 2*max_lag+1
    cross-correlation sequence \a z. (lags: \c -max_lag,...,0,...,max_lag)

    For \c max_lag=-1 the cross-correlation sequence is of length \c 2*M-1, i.e., the cross-correlation for all possible lags.

    Scaling options \a scaleopt:
    \arg \a none \c => No scaling of the cross-correlation vector
    \arg \a biased \c => Scales the cross-correlation vector by \c 1/M
    \arg \a unbiased \c => Scales the cross-correlation vector by \c 1/(M-abs(lag))
    \arg \a coeff \c => Normalises the cross-correlation to 1 for zero lag.

    \note \c max_lag \c <= \c M-1
    \note If \c x and \c y are of different length, the shortest one is zero-padded

    \param x (Input) Vector of samples
    \param y (Input) Vector of samples
    \param out (Output) The cross correlation between \a x and \a y.
    \param max_lag (Input) Maximum lag for which the cross-correlation is calculated. The output vector is of size \c 2*maxlag+1.
    Default value: \c max_lag=-1 calculates the cross-correlations for all possible lags
    \param scaleopt (Input) Indicates how the cross-correlation function should be scaled. Default value: \c "none" indicates that no scaling is done

    @{
  */
  void xcorr_old(const vec &x, const vec &y, vec &out, const int max_lag=-1, const std::string scaleopt="none");
  void xcorr(const vec &x, const vec &y, vec &out, const int max_lag=-1, const std::string scaleopt="none");
  /*! @} */

  /*!
    \brief Cross-correlation calculation

    \c z=xcorr(x,y,max_lag), where \a x and \a y are length \a M vectors \a (M>1), returns the length \c 2*max_lag+1
    cross-correlation sequence \a z. (lags: \c -max_lag,...,0,...,max_lag)

    For \c max_lag=-1 the cross-correlation sequence is of length \c 2*M-1, i.e., the cross-correlation for all possible lags.

    Scaling options \a scaleopt:
    \arg \a none \c => No scaling of the cross-correlation vector
    \arg \a biased \c => Scales the cross-correlation vector by \c 1/M
    \arg \a unbiased \c => Scales the cross-correlation vector by \c 1/(M-abs(lag))
    \arg \a coeff \c => Normalises the cross-correlation to 1 for zero lag.

    \note \c max_lag \c <= \c M-1
    \note If \c x and \c y are of different length, the shortest one is zero-padded

    \param x (Input) Vector of samples
    \param y (Input) Vector of samples
    \param max_lag (Input) Maximum lag for which the cross-correlation is calculated. The output vector is of size \c 2*maxlag+1.
    Default value: \c max_lag=-1 calculates the cross-correlations for all possible lags
    \param scaleopt (Input) Indicates how the cross-correlation function should be scaled. Default
    value: \c "none" indicates that no scaling is done
    \returns The cross correlation between \a x and \a y.

    @{
  */
  vec xcorr_old(const vec &x, const vec &y, const int max_lag=-1, const std::string scaleopt="none");
  vec xcorr(const vec &x, const vec &y, const int max_lag=-1, const std::string scaleopt="none");
  /*! @} */

  /*!
    \brief Cross Correlation

    \code r = xcorr(x,y) \endcode returns the cross-correlation vector \b r.
  */
  cvec xcorr(const cvec &x, const cvec &y,const int max_lag=-1,const std::string scaleopt="none");


  /*!
    \brief Auto-correlation calculation

    \c z=xcorr(x,max_lag), where \a x and is a length \a M vector \a (M>1), returns the length \c 2*max_lag+1 auto-correlation
    sequence \a z. (lags: \c -max_lag,...,0,...,max_lag)

    For \c max_lag=-1 the auto-correlation sequence is of length \c 2*M-1, i.e., the cross correlation for all possible lags.

    Scaling options \a scaleopt:
    \arg \a none \c => No scaling of the auto-correlation vector
    \arg \a biased \c => Scales the auto-correlation vector by \c 1/M
    \arg \a unbiased \c => Scales the auto-correlation vector by \c 1/(M-abs(lag))
    \arg \a coeff \c => Normalises the auto-correlation so that \c acf(x)=1 for zero lag.

    \note \c max_lag \c <= \c M-1

    \param x (Input) Vector of samples
    \param max_lag (Input) Maximum lag for which the auto-correlation is calculated. The output vector is of size \c 2*maxlag+1.
    Default value \c max_lag=-1 calculates the auto-correlations for all possible lags.
    \param scaleopt (Input) Indicates how the auto-correlation function should be scaled.
    Default value: \c "none" indicates that no scaling is done.
    \returns The auto-correlation of \a x.

    @{
  */
  vec xcorr_old(const vec &x, const int max_lag=-1, const std::string scaleopt="none");
  vec xcorr(const vec &x, const int max_lag=-1, const std::string scaleopt="none");
  /*! @} */

  /*!
    \brief Cross Correlation

    \code r = xcorr(x) \endcode returns the auto-correlation vecotr \b r.
  */
  cvec xcorr(const cvec &x, const int max_lag=-1,const std::string scaleopt="none");

  /*!
    \brief Cross Correlation

    \code xcorr(x,y,out) \endcode Computes the cross-correlatin and returns in vector \b out
  */
  void xcorr(const cvec &x, const cvec &y, cvec &out, const int max_lag=-1,const std::string scaleopt="none",
	     bool autoflag=true);

  /*!
    \brief Covariance matrix calculation

    Calculates the covariance matrix of the observations in the matrix \f$X\f$. Each
    row is an observation and each column represents a variable.

    The covariance is normalized with the number of observations \f$N\f$.
    The mean value is removed before calculation.

    Set is_zero_mean if X already has zero mean.
  */
  mat cov(const mat &X, bool is_zero_mean=false);

  //vec cov(const vec &x, short order);

  /*!
    \brief Power spectrum calculation

    Calculates the power spectrum using the Welch method and a Hanning window.
  */
  vec spectrum(const vec &v, int nfft=256, int noverlap=0);

  /*!
    \brief Power spectrum calculation

    Calculates the power spectrum using using the Welch method and the supplied window w.
  */
  vec spectrum(const vec &v, const vec &w, int noverlap=0);

  /*!
    \brief Power spectrum calculation of a filter

    Calculates the power spectrum of a filter with transfer function a(z)
  */
  vec filter_spectrum(const vec &a, int nfft=256);

  /*!
    \brief Power spectrum calculation of a filter

    Calculates the power spectrum of a filter with transfer function a(z)/b(z)
  */
  vec filter_spectrum(const vec &a, const vec &b, int nfft=256);

  /*! @} */

} // namespace itpp

#endif // #ifndef SIGFUN_H