1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
|
/*!
* \file
* \brief Definition of a Gaussian Mixture Model Class
* \author Thomas Eriksson
*
* -------------------------------------------------------------------------
*
* IT++ - C++ library of mathematical, signal processing, speech processing,
* and communications classes and functions
*
* Copyright (C) 1995-2008 (see AUTHORS file for a list of contributors)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* -------------------------------------------------------------------------
*/
#ifndef GMM_H
#define GMM_H
#include <itpp/base/mat.h>
namespace itpp {
//! \cond
/*!
\ingroup sourcecoding
\brief Gaussian Mixture Model Class
\author Thomas Eriksson
*/
class GMM {
public:
GMM();
GMM(int nomix, int dim);
GMM(std::string filename);
void init_from_vq(const vec &codebook, int dim);
// void init(const vec &w_in, const vec &m_in, const vec &sigma_in);
void init(const vec &w_in, const mat &m_in, const mat &sigma_in);
void load(std::string filename);
void save(std::string filename);
void set_weight(const vec &weights, bool compflag=true);
void set_weight(int i, double weight, bool compflag=true);
void set_mean(const mat &m_in);
void set_mean(const vec &means, bool compflag=true);
void set_mean(int i, const vec &means, bool compflag=true);
void set_covariance(const mat &sigma_in);
void set_covariance(const vec &covariances, bool compflag=true);
void set_covariance(int i, const vec &covariances, bool compflag=true);
int get_no_mixtures();
int get_no_gaussians() const { return M; }
int get_dimension();
vec get_weight();
double get_weight(int i);
vec get_mean();
vec get_mean(int i);
vec get_covariance();
vec get_covariance(int i);
void marginalize(int d_new);
void join(const GMM &newgmm);
void clear();
double likelihood(const vec &x);
double likelihood_aposteriori(const vec &x, int mixture);
vec likelihood_aposteriori(const vec &x);
vec draw_sample();
protected:
vec m,sigma,w;
int M,d;
private:
void compute_internals();
vec normweight,normexp;
};
inline void GMM::set_weight(const vec &weights, bool compflag) {w=weights; if (compflag) compute_internals(); }
inline void GMM::set_weight(int i, double weight, bool compflag) {w(i)=weight; if (compflag) compute_internals(); }
inline void GMM::set_mean(const vec &means, bool compflag) {m=means; if (compflag) compute_internals(); }
inline void GMM::set_covariance(const vec &covariances, bool compflag) {sigma=covariances; if (compflag) compute_internals(); }
inline int GMM::get_no_mixtures()
{
it_warning("GMM::get_no_mixtures(): This function is depreceted and might be removed from feature releases. Please use get_no_gaussians() instead.");
return M;
}
inline int GMM::get_dimension() {return d;}
inline vec GMM::get_weight() {return w;}
inline double GMM::get_weight(int i) {return w(i);}
inline vec GMM::get_mean() {return m;}
inline vec GMM::get_mean(int i) {return m.mid(i*d,d);}
inline vec GMM::get_covariance() {return sigma;}
inline vec GMM::get_covariance(int i) {return sigma.mid(i*d,d);}
GMM gmmtrain(Array<vec> &TrainingData, int M, int NOITER=30, bool VERBOSE=true);
//! \endcond
} // namespace itpp
#endif // #ifndef GMM_H
|