1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
|
/*!
* \file
* \brief Definitions of a vector quantizer training functions
* \author Thomas Eriksson
*
* -------------------------------------------------------------------------
*
* IT++ - C++ library of mathematical, signal processing, speech processing,
* and communications classes and functions
*
* Copyright (C) 1995-2008 (see AUTHORS file for a list of contributors)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* -------------------------------------------------------------------------
*/
#ifndef VQTRAIN_H
#define VQTRAIN_H
#include <itpp/base/vec.h>
#include <itpp/base/mat.h>
#include <itpp/base/array.h>
namespace itpp {
//! ADD DOCUMENTATION HERE
double kmeansiter(Array<vec> &DB, mat &codebook);
//! ADD DOCUMENTATION HERE
mat kmeans(Array<vec> &DB, int SIZE, int NOITER=9999, bool VERBOSE=true);
//! ADD DOCUMENTATION HERE
mat lbg(Array<vec> &DB, int SIZE, int NOITER=9999, bool VERBOSE=true);
/*!
\ingroup sourcecoding
\brief Function for vector quantization training
The following code illustrates how the VQ can be trained.
\code
VQ Quantizer;
mat A;
Array<vec> database;
// read vectors into database somehow
...
// train a vq
A = vqtrain(database, 1024, 1000000);
Quantizer.set_codebook(A);
\endcode
*/
mat vqtrain(Array<vec> &DB, int SIZE, int NOITER, double STARTSTEP=0.2, bool VERBOSE=true);
//! ADD DOCUMENTATION HERE
vec sqtrain(const vec &inDB, int SIZE);
//! ADD DOCUMENTATION HERE
ivec bitalloc(const vec& variances, int nobits);
} // namespace itpp
#endif // #ifndef VQTRAIN_H
|