File: histogram.h

package info (click to toggle)
libitpp 4.0.4-2
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 7,520 kB
  • ctags: 6,341
  • sloc: cpp: 51,608; sh: 9,248; makefile: 636; fortran: 8
file content (222 lines) | stat: -rw-r--r-- 6,658 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
/*!
 * \file
 * \brief Histogram class - header file
 * \author Andy Panov and Adam Piatyszek
 *
 * -------------------------------------------------------------------------
 *
 * IT++ - C++ library of mathematical, signal processing, speech processing,
 *        and communications classes and functions
 *
 * Copyright (C) 1995-2008  (see AUTHORS file for a list of contributors)
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 *
 * -------------------------------------------------------------------------
 */

#ifndef HISTOGRAM_H
#define HISTOGRAM_H

#include <itpp/base/mat.h>


namespace itpp {

  //! \addtogroup histogram
  //!@{

  /*!
    \brief Histogram computation class
    \author Andy Panov

    The Histogram class counts the number of observations of arbitrary
    numerical types that fall into specified bins. Centers of the leftmost
    and rightmost bin along with a total number of bins are passed to a
    histogram object as constructor parameters. Histogram counters are
    updated when calling update() method. It is possible to access bin
    counters and bin interval parameters for all bins at once or separately
    for each bin.

    Example:
    \code
    // Create histogram with 100 bins spanning from 0 to 99 (leftmost bin is
    // centered at 0, rightmost bin is centerd at 99).
    Histogram<double> hist(0, 99, 100);

    // Compute histogram of 100 random variables taken from normal distribution
    hist.update(randn(100));

    // Get position of bin number 5
    double bin5_center = hist.get_bin_center(5);
    // Get corresponding bin counter
    int bin5_counter = hist.get_bin(5);
    // Get bin 5 left boundary:
    double bin5_left = hist.get_bin_left(5);

    // compute PDF & CDF of experimental data
    vec my_data_pdf = hist.get_pdf();
    vec my_data_cdf = hist.get_cdf();
    \endcode
   */
  template<typename Num_T>
  class Histogram {
  public:
    //! Default constructor. Constructs histogram with 100 bins spanning
    //! values from 0 to 99 by default.
    Histogram(Num_T from = Num_T(0), Num_T to = Num_T(99), int n_bins = 100);
    //! Default destructor
    ~Histogram() {};

    //! Histogram setup
    void setup(Num_T from, Num_T to, int n_bins);

    //! Histogram update
    void update(Num_T value);
    //! Histogram update
    void update(Vec<Num_T> values);
    //! Histogram update
    void update(Mat<Num_T> values);

    //! Bins reset, so accumulation can be restarted
    void reset() { trials_cnt = 0; bins.zeros(); };
    //! Access to single bin counter
    int get_bin(int ix) const { return bins(ix); };
    //! Access to histogram as a vector
    ivec get_bins() const { return bins; };
    //! Access to bin center values (all bins)
    Vec<Num_T> get_bin_centers() const { return center_vals; };
    //! Access to bin center (single bin)
    Num_T get_bin_center(int ix) const { return center_vals(ix); };
    //! Access to left boundary of bin intervals (all bins)
    Vec<Num_T> get_bin_lefts() const { return lo_vals; };
    //! Access to left boundary of single bin
    Num_T get_bin_left(int ix) const { return lo_vals(ix); };
    //! Access to right boundary of bin intervals (all bins)
    Vec<Num_T> get_bin_rights() const { return hi_vals; };
    //! Access to right boundary of single bin
    Num_T get_bin_right(int ix) const { return hi_vals(ix); };

    //! Experimental Probability Density Function (PDF) computation
    vec get_pdf() const;
    //! Experimental Cumulative Density Function (CDF) computation
    vec get_cdf() const;

    //! Current number of bins
    int bins_num() const { return num_bins; };
    //! Current trials counter
    int trials_num() const {return trials_cnt;};

  private:
    //! Number of bins
    int num_bins;
    //! Step between bins
    Num_T step;
    //! Low boundaries of histogram bins
    Vec<Num_T> lo_vals;
    //! Upper boundaries of histogram bins
    Vec<Num_T> hi_vals;
    //! Bin centers
    Vec<Num_T> center_vals;
    //! Bins storage
    ivec bins;
    //! Number of processed samples
    int trials_cnt;
  };

  template<class Num_T>
  inline Histogram<Num_T>::Histogram(Num_T from, Num_T to, int n_bins)

  {
    setup(from, to, n_bins);
  }

  template<class Num_T>
  inline void Histogram<Num_T>::setup(Num_T from, Num_T to, int n_bins)
  {
    num_bins = n_bins;
    lo_vals.set_size(n_bins);
    hi_vals.set_size(n_bins);
    center_vals.set_size(n_bins);
    bins.set_size(n_bins);
    trials_cnt = 0;
    step = (to - from) / (num_bins - 1);
    center_vals = linspace(from, to, num_bins);
    lo_vals = center_vals - step/2;
    hi_vals = center_vals + step/2;
    reset();
  }

  template<class Num_T>
  inline void Histogram<Num_T>::update(Num_T value)
  {
    // search for the corresponding bin using dichotomy approach
    int start = 0;
    int end = num_bins - 1;
    int test = (start + end) / 2;

    while (start < end) {
      if (value < lo_vals(test))
	end = test - 1;
      else if (value >= hi_vals(test))
	start = test + 1;
      else
	break;
      test = (start + end) / 2;
    };

    bins(test)++;
    trials_cnt++;
  }

 template<class Num_T>
 inline void Histogram<Num_T>::update(Vec<Num_T> values)
 {
   for (int i = 0; i < values.length(); i++)
     update(values(i));
 }

 template<class Num_T>
 inline void Histogram<Num_T>::update(Mat<Num_T> values)
 {
   for (int i = 0; i < values.rows(); i++)
     for (int j = 0; j < values.cols(); j++)
       update(values(i,j));
 }

  template<class Num_T>
  inline vec Histogram<Num_T>::get_pdf() const
  {
    vec pdf(num_bins);
    for (int j = 0; j < num_bins; j++)
      pdf(j) = static_cast<double>(bins(j)) / trials_cnt;
    return pdf;
  }

  template<class Num_T>
  inline vec Histogram<Num_T>::get_cdf() const
  {
    ivec tmp = cumsum(bins);
    vec cdf(num_bins);
    for (int j = 0; j < num_bins; j++)
      cdf(j) = static_cast<double>(tmp(j)) / trials_cnt;
    return cdf;
  }

  //!@}

} // namespace itpp

#endif // #ifndef HISTOGRAM_H