File: lu.h

package info (click to toggle)
libitpp 4.3.1-13
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 9,952 kB
  • sloc: cpp: 73,628; makefile: 661; python: 548; sh: 261
file content (107 lines) | stat: -rw-r--r-- 3,508 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
/*!
 * \file
 * \brief Definitions of LU factorisation functions
 * \author Tony Ottosson
 *
 * -------------------------------------------------------------------------
 *
 * Copyright (C) 1995-2010  (see AUTHORS file for a list of contributors)
 *
 * This file is part of IT++ - a C++ library of mathematical, signal
 * processing, speech processing, and communications classes and functions.
 *
 * IT++ is free software: you can redistribute it and/or modify it under the
 * terms of the GNU General Public License as published by the Free Software
 * Foundation, either version 3 of the License, or (at your option) any
 * later version.
 *
 * IT++ is distributed in the hope that it will be useful, but WITHOUT ANY
 * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along
 * with IT++.  If not, see <http://www.gnu.org/licenses/>.
 *
 * -------------------------------------------------------------------------
 */

#ifndef LU_H
#define LU_H

#include <itpp/base/mat.h>
#include <itpp/itexports.h>

namespace itpp
{


/*! \addtogroup matrixdecomp
 */
//!@{
/*!
  \brief LU factorisation of real matrix

  The LU factorization of the real matrix \f$\mathbf{X}\f$ of size \f$n \times n\f$ is given
  by
  \f[
  \mathbf{X} = \mathbf{P}^T \mathbf{L} \mathbf{U} ,
  \f]
  where \f$\mathbf{L}\f$ and \f$\mathbf{U}\f$ are lower and upper triangular matrices
  and \f$\mathbf{P}\f$ is a permutation matrix.

  The interchange permutation vector \a p is such that \a k and \a p(k) should be
  changed for all \a k. Given this vector a permutation matrix can be constructed using the
  function
  \code
  bmat permutation_matrix(const ivec &p)
  \endcode

  If \a X is an \a n by \a n matrix \a lu(X,L,U,p) computes the LU decomposition.
  \a L is a lower triangular, \a U an upper triangular matrix.
  \a p is the interchange permutation vector such that \a k and \a p(k) should be
  changed for all \a k.

  Returns true is calculation succeeds. False otherwise.
*/
ITPP_EXPORT bool lu(const mat &X, mat &L, mat &U, ivec &p);


/*!
  \brief LU factorisation of real matrix

  The LU factorization of the complex matrix \f$\mathbf{X}\f$ of size \f$n \times n\f$ is given
  by
  \f[
  \mathbf{X} = \mathbf{P}^T \mathbf{L} \mathbf{U} ,
  \f]
  where \f$\mathbf{L}\f$ and \f$\mathbf{U}\f$ are lower and upper triangular matrices
  and \f$\mathbf{P}\f$ is a permutation matrix.

  The interchange permutation vector \a p is such that \a k and \a p(k) should be
  changed for all \a k. Given this vector a permutation matrix can be constructed using the
  function
  \code
  bmat permutation_matrix(const ivec &p)
  \endcode

  If \a X is an \a n by \a n matrix \a lu(X,L,U,p) computes the LU decomposition.
  \a L is a lower triangular, \a U an upper triangular matrix.
  \a p is the interchange permutation vector such that elements \a k and row \a p(k) should be
  interchanged.

  Returns true is calculation succeeds. False otherwise.
*/
ITPP_EXPORT bool lu(const cmat &X, cmat &L, cmat &U, ivec &p);


//! Makes swapping of vector b according to the interchange permutation vector p.
ITPP_EXPORT void interchange_permutations(vec &b, const ivec &p);

//! Make permutation matrix P from the interchange permutation vector p.
ITPP_EXPORT bmat permutation_matrix(const ivec &p);
//!@}

} // namespace itpp

#endif // #ifndef LU_H