File: error.cpp

package info (click to toggle)
libitpp 4.3.1-13
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 9,952 kB
  • sloc: cpp: 73,628; makefile: 661; python: 548; sh: 261
file content (247 lines) | stat: -rw-r--r-- 7,377 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
/*!
 * \file
 * \brief Error functions - source file
 * \author Tony Ottosson, Pal Frenger and Adam Piatyszek
 *
 * -------------------------------------------------------------------------
 *
 * Copyright (C) 1995-2010  (see AUTHORS file for a list of contributors)
 *
 * This file is part of IT++ - a C++ library of mathematical, signal
 * processing, speech processing, and communications classes and functions.
 *
 * IT++ is free software: you can redistribute it and/or modify it under the
 * terms of the GNU General Public License as published by the Free Software
 * Foundation, either version 3 of the License, or (at your option) any
 * later version.
 *
 * IT++ is distributed in the hope that it will be useful, but WITHOUT ANY
 * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along
 * with IT++.  If not, see <http://www.gnu.org/licenses/>.
 *
 * -------------------------------------------------------------------------
 */

#include <itpp/base/math/error.h>
#include <itpp/base/math/elem_math.h>
#include <itpp/base/itcompat.h>


namespace itpp
{

/*!
 * Abramowitz and Stegun: Eq. (7.1.14) gives this continued fraction
 * for erfc(z)
 *
 * erfc(z) = sqrt(pi).exp(-z^2).  1   1/2   1   3/2   2   5/2
 *                               ---  ---  ---  ---  ---  --- ...
 *                               z +  z +  z +  z +  z +  z +
 *
 * This is evaluated using Lentz's method, as described in the
 * narative of Numerical Recipes in C.
 *
 * The continued fraction is true providing real(z) > 0. In practice
 * we like real(z) to be significantly greater than 0, say greater
 * than 0.5.
 */
std::complex<double> cerfc_continued_fraction(const std::complex<double>& z)
{
  const double tiny = std::numeric_limits<double>::min();

  // first calculate z+ 1/2   1
  //                    ---  --- ...
  //                    z +  z +
  std::complex<double> f(z);
  std::complex<double> C(f);
  std::complex<double> D(0.0);
  std::complex<double> delta;
  double a;

  a = 0.0;
  do {
    a += 0.5;
    D = z + a * D;
    C = z + a / C;
    if ((D.real() == 0.0) && (D.imag() == 0.0))
      D = tiny;
    D = 1.0 / D;
    delta = C * D;
    f = f * delta;
  }
  while (abs(1.0 - delta) > eps);

  // Do the first term of the continued fraction
  f = 1.0 / f;

  // and do the final scaling
  f = f * exp(-z * z) / std::sqrt(pi);

  return f;
}

//! Complementary function to \c cerfc_continued_fraction
std::complex<double> cerf_continued_fraction(const std::complex<double>& z)
{
  if (z.real() > 0)
    return 1.0 - cerfc_continued_fraction(z);
  else
    return -1.0 + cerfc_continued_fraction(-z);
}

/*!
 * Abramawitz and Stegun: Eq. (7.1.5) gives a series for erf(z) good
 * for all z, but converges faster for smallish abs(z), say abs(z) < 2.
 */
std::complex<double> cerf_series(const std::complex<double>& z)
{
  const double tiny = std::numeric_limits<double>::min();
  std::complex<double> sum(0.0);
  std::complex<double> term(z);
  std::complex<double> z2(z*z);

  for (int n = 0; (n < 3) || (abs(term) > abs(sum) * tiny); n++) {
    sum += term / static_cast<double>(2 * n + 1);
    term *= -z2 / static_cast<double>(n + 1);
  }

  return sum * 2.0 / std::sqrt(pi);
}

/*!
 * Numerical Recipes quotes a formula due to Rybicki for evaluating
 * Dawson's Integral:
 *
 * exp(-x^2) integral exp(t^2).dt = 1/sqrt(pi) lim  sum  exp(-(z-n.h)^2) / n
 *            0 to x                           h->0 n odd
 *
 * This can be adapted to erf(z).
 */
std::complex<double> cerf_rybicki(const std::complex<double>& z)
{
  double h = 0.2; // numerical experiment suggests this is small enough

  // choose an even n0, and then shift z->z-n0.h and n->n-h.
  // n0 is chosen so that real((z-n0.h)^2) is as small as possible.
  int n0 = 2 * static_cast<int>(z.imag() / (2 * h) + 0.5);

  std::complex<double> z0(0.0, n0 * h);
  std::complex<double> zp(z - z0);
  std::complex<double> sum(0.0, 0.0);

  // limits of sum chosen so that the end sums of the sum are
  // fairly small. In this case exp(-(35.h)^2)=5e-22
  for (int np = -35; np <= 35; np += 2) {
    std::complex<double> t(zp.real(), zp.imag() - np * h);
    std::complex<double> b(exp(t * t) / static_cast<double>(np + n0));
    sum += b;
  }

  sum *= 2.0 * exp(-z * z) / pi;

  return std::complex<double>(-sum.imag(), sum.real());
}

/*
 * This function calculates a well known error function erf(z) for
 * complex z. Three methods are implemented. Which one is used
 * depends on z.
 */
std::complex<double> erf(const std::complex<double>& z)
{
  // Use the method appropriate to size of z -
  // there probably ought to be an extra option for NaN z, or infinite z
  if (abs(z) < 2.0)
    return cerf_series(z);
  else {
    if (std::abs(z.real()) < 0.5)
      return cerf_rybicki(z);
    else
      return cerf_continued_fraction(z);
  }
}


double erfinv(double P)
{
  double Y, A, B, X, Z, W, WI, SN, SD, F, Z2, SIGMA;
  double A1 = -.5751703, A2 = -1.896513, A3 = -.5496261E-1;
  double B0 = -.1137730, B1 = -3.293474, B2 = -2.374996, B3 = -1.187515;
  double C0 = -.1146666, C1 = -.1314774, C2 = -.2368201, C3 = .5073975e-1;
  double D0 = -44.27977, D1 = 21.98546, D2 = -7.586103;
  double E0 = -.5668422E-1, E1 = .3937021, E2 = -.3166501, E3 = .6208963E-1;
  double F0 = -6.266786, F1 = 4.666263, F2 = -2.962883;
  double G0 = .1851159E-3, G1 = -.2028152E-2, G2 = -.1498384, G3 = .1078639E-1;
  double H0 = .9952975E-1, H1 = .5211733, H2 = -.6888301E-1;
  // double RINFM=1.7014E+38;

  X = P;
  SIGMA = sign(X);
  it_error_if(X < -1 || X > 1, "erfinv : argument out of bounds");
  Z = fabs(X);
  if (Z > .85) {
    A = 1 - Z;
    B = Z;
    W = std::sqrt(-log(A + A * B));
    if (W >= 2.5) {
      if (W >= 4.) {
        WI = 1. / W;
        SN = ((G3 * WI + G2) * WI + G1) * WI;
        SD = ((WI + H2) * WI + H1) * WI + H0;
        F = W + W * (G0 + SN / SD);
      }
      else {
        SN = ((E3 * W + E2) * W + E1) * W;
        SD = ((W + F2) * W + F1) * W + F0;
        F = W + W * (E0 + SN / SD);
      }
    }
    else {
      SN = ((C3 * W + C2) * W + C1) * W;
      SD = ((W + D2) * W + D1) * W + D0;
      F = W + W * (C0 + SN / SD);
    }
  }
  else {
    Z2 = Z * Z;
    F = Z + Z * (B0 + A1 * Z2 / (B1 + Z2 + A2 / (B2 + Z2 + A3 / (B3 + Z2))));
  }
  Y = SIGMA * F;
  return Y;
}

double Qfunc(double x)
{
  return (0.5 * ::erfc(x / 1.41421356237310));
}


// Error function
vec erf(const vec &x) { return apply_function<double>(::erf, x); }
mat erf(const mat &x) { return apply_function<double>(::erf, x); }
cvec erf(const cvec &x)
{
  return apply_function<std::complex<double> >(erf, x);
}
cmat erf(const cmat &x)
{
  return apply_function<std::complex<double> >(erf, x);
}

// Inverse of error function
vec erfinv(const vec &x) { return apply_function<double>(erfinv, x); }
mat erfinv(const mat &x) { return apply_function<double>(erfinv, x); }

// Complementary error function
vec erfc(const vec &x) { return apply_function<double>(::erfc, x); }
mat erfc(const mat &x) { return apply_function<double>(::erfc, x); }

// Q-function
vec Qfunc(const vec &x) { return apply_function<double>(Qfunc, x); }
mat Qfunc(const mat &x) { return apply_function<double>(Qfunc, x); }

} // namespace itpp