File: random.cpp

package info (click to toggle)
libitpp 4.3.1-13
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 9,952 kB
  • sloc: cpp: 73,628; makefile: 661; python: 548; sh: 261
file content (923 lines) | stat: -rw-r--r-- 24,629 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
/*!
 * \file
 * \brief Implementation of classes for random number generators
 * \author Tony Ottosson and Adam Piatyszek
 *
 * -------------------------------------------------------------------------
 *
 * Copyright (C) 1995-2010  (see AUTHORS file for a list of contributors)
 *
 * This file is part of IT++ - a C++ library of mathematical, signal
 * processing, speech processing, and communications classes and functions.
 *
 * IT++ is free software: you can redistribute it and/or modify it under the
 * terms of the GNU General Public License as published by the Free Software
 * Foundation, either version 3 of the License, or (at your option) any
 * later version.
 *
 * IT++ is distributed in the hope that it will be useful, but WITHOUT ANY
 * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along
 * with IT++.  If not, see <http://www.gnu.org/licenses/>.
 *
 * -------------------------------------------------------------------------
 */

#include <itpp/base/random.h>
#include <itpp/base/itcompat.h>
#include <itpp/base/math/elem_math.h>


namespace itpp
{

namespace random_details
{

//Thread-local context for thread-safe RNGs
static ActiveDSFMT::Context thread_local_context;
#pragma omp threadprivate(thread_local_context)
//Thread-local context initialization flag
static bool is_thread_local_context_initialized = false;
#pragma omp threadprivate(is_thread_local_context_initialized)

ActiveDSFMT::Context& lc_get()
{
  return thread_local_context;
}

bool lc_is_initialized()
{
  return is_thread_local_context_initialized;
}

void lc_mark_initialized()
{
  is_thread_local_context_initialized = true;
}

/*!
* \brief Get an unsigned int from time variables t and c.
*
* Better than uint(x) in case x is floating point in [0,1]
* Based on code by Lawrence Kirby (fred@genesis.demon.co.uk)
*/
static unsigned int hash_time_to_seed(time_t t, clock_t c)
{
  static unsigned int differ = 0; // guarantee time-based seeds will change

  unsigned int h1 = 0;
  unsigned char *p = (unsigned char *) &t;
  for(size_t i = 0; i < sizeof(t); ++i) {
    h1 *= std::numeric_limits<unsigned char>::max() + 2U;
    h1 += p[i];
  }
  unsigned int h2 = 0;
  p = (unsigned char *) &c;
  for(size_t j = 0; j < sizeof(c); ++j) {
    h2 *= std::numeric_limits<unsigned char>::max() + 2U;
    h2 += p[j];
  }
  return (h1 + differ++) ^ h2;
}



// ----------------------------------------------------------------------
// ActiveDSFMT (DSFMT_19937_RNG)
// ----------------------------------------------------------------------
template <>
const bool ActiveDSFMT::bigendian = is_bigendian();

#if defined(__SSE2__)
template <>
const __m128i ActiveDSFMT::sse2_param_mask = _mm_set_epi32(ActiveDSFMT::MSK32_3, ActiveDSFMT::MSK32_4, ActiveDSFMT::MSK32_1, ActiveDSFMT::MSK32_2);
#endif // __SSE2__
}

/*
 *Global Seed Provider class definition.
 *
 * Provides unique seeds for thread-safe generators running in each thread.
 */
class GlobalSeedProvider
{
  static const unsigned int default_first_seed = 4257U;
  typedef random_details::ActiveDSFMT DSFMT;
public:
  //constructor
  GlobalSeedProvider(): _dsfmt(_c), _first_seed_given(false) {
    _dsfmt.init_gen_rand(default_first_seed);
  }
  //set new seed
  void set_seed(unsigned int s) {_dsfmt.init_gen_rand(s);}
  //get preset seed
  unsigned int get_seed() {return _c.last_seed;}
  //reset provider state to previously set one
  void reset() { if(_first_seed_given) _dsfmt.init_gen_rand(get_seed());}
  //set previously saved state from ivec
  void set_state(const ivec& st) {
    int size = (DSFMT::N + 1) * 4;
    it_assert(st.size() == size + 1, "GlobalSeedProvider::state(): "
              "Invalid state initialization vector");
    uint32_t *psfmt = &_c.status[0].u32[0];
    for(int i = 0; i < size; ++i) {
      psfmt[i] = static_cast<uint32_t>(st(i));
    }
    _c.idx = st(size);
    _first_seed_given = true;
  }
  //get current provider state
  ivec get_state() {
    int size = (DSFMT::N + 1) * 4;
    uint32_t *psfmt = &_c.status[0].u32[0];
    ivec state(size + 1); // size + 1 to save idx variable in the same vec
    for(int i = 0; i < size; ++i) {
      state(i) = static_cast<int>(psfmt[i]);
    }
    state(size) = _c.idx;
    return state;
  }
  //randomize current provider state with system time
  void randomize() {_dsfmt.init_gen_rand(random_details::hash_time_to_seed(time(0), clock())); _first_seed_given = true;}
  //generate new seed for random number generators
  unsigned int generate() {
    if(_first_seed_given)
      return _dsfmt.genrand_uint32();
    else {
      //return default seed on first request.
      //it is done in order not to breake the old-style itpp tests.
      //Some tests rely on the default state equal to 4257U
      _first_seed_given = true;
      return default_first_seed;
    }
  }
private:
  //
  DSFMT _dsfmt;
  //
  DSFMT::Context _c;
  //
  bool _first_seed_given;
};


//Global seed provider instance
GlobalSeedProvider& global_seed_provider()
{
  static GlobalSeedProvider global_seed_provider_instance;
  return global_seed_provider_instance;
}


void GlobalRNG_reset(unsigned int seed)
{
  #pragma omp critical
  {
    global_seed_provider().set_seed(seed);
  }
}


void GlobalRNG_reset()
{
  #pragma omp critical
  {
    global_seed_provider().reset();
  }
}

unsigned int GlobalRNG_get_local_seed()
{
  unsigned int s;
  #pragma omp critical
  {
    s = global_seed_provider().generate();
  }
  return s;
}


void GlobalRNG_randomize()
{
  #pragma omp critical
  {
    global_seed_provider().randomize();
  }
}


void GlobalRNG_get_state(ivec &state)
{
  #pragma omp critical
  {
    state = global_seed_provider().get_state();
  }
}


void GlobalRNG_set_state(const ivec &state)
{
  #pragma omp critical
  {
    global_seed_provider().set_state(state);
  }
}

void RNG_reset(unsigned int seed)
{
  random_details::ActiveDSFMT dsfmt(random_details::lc_get());
  dsfmt.init_gen_rand(seed);
  random_details::lc_mark_initialized();
}


void RNG_reset()
{
  random_details::ActiveDSFMT dsfmt(random_details::lc_get());

  if(random_details::lc_is_initialized()) {
    //already initialized. Reinit with last set seed;
    dsfmt.init_gen_rand(random_details::lc_get().last_seed);
  }
  else {
    //query global seed provider for new seed and init with it
    dsfmt.init_gen_rand(GlobalRNG_get_local_seed());
    random_details::lc_mark_initialized();
  }
}


void RNG_randomize()
{
  random_details::ActiveDSFMT dsfmt(random_details::lc_get());
  dsfmt.init_gen_rand(random_details::hash_time_to_seed(time(0), clock()));
  random_details::lc_mark_initialized();
}


void RNG_get_state(ivec &state)
{
  int size = (random_details::ActiveDSFMT::N + 1) * 4;
  uint32_t *psfmt = &random_details::lc_get().status[0].u32[0];
  state.set_size(size + 1); // size + 1 to save idx variable in the same vec
  for(int i = 0; i < size; ++i) {
    state(i) = static_cast<int>(psfmt[i]);
  }
  state(size) = random_details::lc_get().idx;
}


void RNG_set_state(const ivec &state)
{
  int size = (random_details::ActiveDSFMT::N + 1) * 4;
  it_assert(state.size() == size + 1, "RNG_set_state: "
            "Invalid state initialization vector");
  uint32_t *psfmt = &random_details::lc_get().status[0].u32[0];
  for(int i = 0; i < size; ++i) {
    psfmt[i] = static_cast<uint32_t>(state(i));
  }
  random_details::lc_get().idx = state(size);
}

///////////////////////////////////////////////
// I_Uniform_RNG
///////////////////////////////////////////////

I_Uniform_RNG::I_Uniform_RNG(int min, int max)
{
  setup(min, max);
}

void I_Uniform_RNG::setup(int min, int max)
{
  if(min <= max) {
    lo = min;
    hi = max;
  }
  else {
    lo = max;
    hi = min;
  }
}

void I_Uniform_RNG::get_setup(int &min, int &max) const
{
  min = lo;
  max = hi;
}

ivec I_Uniform_RNG::operator()(int n)
{
  ivec vv(n);

  for(int i = 0; i < n; i++)
    vv(i) = sample();

  return vv;
}

imat I_Uniform_RNG::operator()(int h, int w)
{
  imat mm(h, w);
  int i, j;

  for(i = 0; i < h; i++)
    for(j = 0; j < w; j++)
      mm(i, j) = sample();

  return mm;
}

///////////////////////////////////////////////
// Uniform_RNG
///////////////////////////////////////////////

Uniform_RNG::Uniform_RNG(double min, double max)
{
  setup(min, max);
}

void Uniform_RNG::setup(double min, double max)
{
  if(min <= max) {
    lo_bound = min;
    hi_bound = max;
  }
  else {
    lo_bound = max;
    hi_bound = min;
  }
}

void Uniform_RNG::get_setup(double &min, double &max) const
{
  min = lo_bound;
  max = hi_bound;
}

///////////////////////////////////////////////
// Exp_RNG
///////////////////////////////////////////////

Exponential_RNG::Exponential_RNG(double lambda)
{
  setup(lambda);
}

vec Exponential_RNG::operator()(int n)
{
  vec vv(n);

  for(int i = 0; i < n; i++)
    vv(i) = sample();

  return vv;
}

mat Exponential_RNG::operator()(int h, int w)
{
  mat mm(h, w);
  int i, j;

  for(i = 0; i < h; i++)
    for(j = 0; j < w; j++)
      mm(i, j) = sample();

  return mm;
}

///////////////////////////////////////////////
// Gamma_RNG
///////////////////////////////////////////////
void Gamma_RNG::init_state()
{
  const static double sqrt32 = 5.656854;

  const static double q1 = 0.04166669;
  const static double q2 = 0.02083148;
  const static double q3 = 0.00801191;
  const static double q4 = 0.00144121;
  const static double q5 = -7.388e-5;
  const static double q6 = 2.4511e-4;
  const static double q7 = 2.424e-4;

  double r = 1.0 / alpha;
  _scale = 1.0 / beta;

  it_error_if(!std::isfinite(alpha) || !std::isfinite(_scale) || (alpha < 0.0)
              || (_scale <= 0.0), "Gamma_RNG::init_state() - wrong parameters");

  _s2 = alpha - 0.5;
  _s = std::sqrt(_s2);
  _d = sqrt32 - _s * 12.0;

  _q0 = ((((((q7 * r + q6) * r + q5) * r + q4) * r + q3) * r
          + q2) * r + q1) * r;

  /* Approximation depending on size of parameter alpha */
  /* The constants in the expressions for _b, _si and _c */
  /* were established by numerical experiments */
  if(alpha <= 3.686) {
    _b = 0.463 + _s + 0.178 * _s2;
    _si = 1.235;
    _c = 0.195 / _s - 0.079 + 0.16 * _s;
  }
  else if(alpha <= 13.022) {
    _b = 1.654 + 0.0076 * _s2;
    _si = 1.68 / _s + 0.275;
    _c = 0.062 / _s + 0.024;
  }
  else {
    _b = 1.77;
    _si = 0.75;
    _c = 0.1515 / _s;
  }

}
vec Gamma_RNG::operator()(int n)
{
  vec vv(n);
  for(int i = 0; i < n; i++)
    vv(i) = sample();
  return vv;
}

mat Gamma_RNG::operator()(int r, int c)
{
  mat mm(r, c);
  for(int i = 0; i < r * c; i++)
    mm(i) = sample();
  return mm;
}

double Gamma_RNG::sample()
{
  // A copy of rgamma code from the R package, adapted to IT++ by Vasek
  // Smidl

  /* Constants : */
  const static double exp_m1 = 0.36787944117144232159;/* exp(-1) = 1/e */

  const static double a1 = 0.3333333;
  const static double a2 = -0.250003;
  const static double a3 = 0.2000062;
  const static double a4 = -0.1662921;
  const static double a5 = 0.1423657;
  const static double a6 = -0.1367177;
  const static double a7 = 0.1233795;

  double e, p, q, t, u, v, w, x, ret_val;
  double a = alpha;
  double scale = _scale;

  if(a < 1.) {  /* GS algorithm for parameters a < 1 */
    if(a == 0)
      return 0.;
    e = 1.0 + exp_m1 * a;
    for(;;) {  //VS repeat
      p = e * RNG.genrand_open_open();
      if(p >= 1.0) {
        x = -std::log((e - p) / a);
        if(-std::log(RNG.genrand_open_close()) >= (1.0 - a) * std::log(x))
          break;
      }
      else {
        x = std::exp(std::log(p) / a);
        if(-std::log(RNG.genrand_open_close()) >= x)
          break;
      }
    }
    return scale * x;
  }

  /* --- a >= 1 : GD algorithm --- */

  /* Step 1: t = standard normal deviate, x = (s,1/2) -normal deviate. */
  /* immediate acceptance (i) */
  t = NRNG.sample();
  x = _s + 0.5 * t;
  ret_val = x * x;
  if(t >= 0.0)
    return scale * ret_val;

  /* Step 2: u = 0,1 - uniform sample. squeeze acceptance (s) */
  u = RNG.genrand_close_open();
  if((_d * u) <= (t * t * t))
    return scale * ret_val;


  /* Step 3: no quotient test if x not positive */
  if(x > 0.0) {
    /* Step 4: calculation of v and quotient q */
    v = t / (_s + _s);
    if(std::fabs(v) <= 0.25)
      q = _q0 + 0.5 * t * t * ((((((a7 * v + a6) * v + a5) * v + a4) * v
                                 + a3) * v + a2) * v + a1) * v;
    else
      q = _q0 - _s * t + 0.25 * t * t + (_s2 + _s2) * log(1.0 + v);

    /* Step 5: quotient acceptance (q) */
    if(log(1.0 - u) <= q)
      return scale * ret_val;
  }

  for(;;) {  //VS repeat
    /* Step 6: e = standard exponential deviate
     *         u =  0,1 -uniform deviate
     *         t = (b,si)-double exponential (laplace) sample */
    e = -std::log(RNG.genrand_open_close()); //see Exponential_RNG
    u = RNG.genrand_open_close();
    u = u + u - 1.0;
    if(u < 0.0)
      t = _b - _si * e;
    else
      t = _b + _si * e;
    /* Step 7: rejection if t < tau(1) = -0.71874483771719 */
    if(t >= -0.71874483771719) {
      /* Step 8:  calculation of v and quotient q */
      v = t / (_s + _s);
      if(std::fabs(v) <= 0.25)
        q = _q0 + 0.5 * t * t *
            ((((((a7 * v + a6) * v + a5) * v + a4) * v + a3) * v
              + a2) * v + a1) * v;
      else
        q = _q0 - _s * t + 0.25 * t * t + (_s2 + _s2) * log(1.0 + v);
      /* Step 9: hat acceptance (h) */
      /* (if q not positive go to step 6) */
      if(q > 0.0) {
        // Try to use w = expm1(q); (Not supported on w32)
        w = expm1(q);
        /*  ^^^^^ original code had approximation with rel.err < 2e-7 */
        /* if t is rejected sample again at step 6 */
        if((_c * std::fabs(u)) <= (w * std::exp(e - 0.5 * t * t)))
          break;
      }
    }
  } /* repeat .. until `t' is accepted */
  x = _s + 0.5 * t;
  return scale * x * x;
}

///////////////////////////////////////////////
// Normal_RNG
///////////////////////////////////////////////

void Normal_RNG::get_setup(double &meanval, double &variance) const
{
  meanval = mean;
  variance = sigma * sigma;
}

// (Ziggurat) tabulated values for the heigt of the Ziggurat levels
const double Normal_RNG::ytab[128] = {
  1, 0.963598623011, 0.936280813353, 0.913041104253,
  0.892278506696, 0.873239356919, 0.855496407634, 0.838778928349,
  0.822902083699, 0.807732738234, 0.793171045519, 0.779139726505,
  0.765577436082, 0.752434456248, 0.739669787677, 0.727249120285,
  0.715143377413, 0.703327646455, 0.691780377035, 0.68048276891,
  0.669418297233, 0.65857233912, 0.647931876189, 0.637485254896,
  0.62722199145, 0.617132611532, 0.607208517467, 0.597441877296,
  0.587825531465, 0.578352913803, 0.569017984198, 0.559815170911,
  0.550739320877, 0.541785656682, 0.532949739145, 0.524227434628,
  0.515614886373, 0.507108489253, 0.498704867478, 0.490400854812,
  0.482193476986, 0.47407993601, 0.466057596125, 0.458123971214,
  0.450276713467, 0.442513603171, 0.434832539473, 0.427231532022,
  0.419708693379, 0.41226223212, 0.404890446548, 0.397591718955,
  0.390364510382, 0.383207355816, 0.376118859788, 0.369097692334,
  0.362142585282, 0.355252328834, 0.348425768415, 0.341661801776,
  0.334959376311, 0.328317486588, 0.321735172063, 0.31521151497,
  0.308745638367, 0.302336704338, 0.29598391232, 0.289686497571,
  0.283443729739, 0.27725491156, 0.271119377649, 0.265036493387,
  0.259005653912, 0.253026283183, 0.247097833139, 0.241219782932,
  0.235391638239, 0.229612930649, 0.223883217122, 0.218202079518,
  0.212569124201, 0.206983981709, 0.201446306496, 0.195955776745,
  0.190512094256, 0.185114984406, 0.179764196185, 0.174459502324,
  0.169200699492, 0.1639876086, 0.158820075195, 0.153697969964,
  0.148621189348, 0.143589656295, 0.138603321143, 0.133662162669,
  0.128766189309, 0.123915440582, 0.119109988745, 0.114349940703,
  0.10963544023, 0.104966670533, 0.100343857232, 0.0957672718266,
  0.0912372357329, 0.0867541250127, 0.082318375932, 0.0779304915295,
  0.0735910494266, 0.0693007111742, 0.065060233529, 0.0608704821745,
  0.056732448584, 0.05264727098, 0.0486162607163, 0.0446409359769,
  0.0407230655415, 0.0368647267386, 0.0330683839378, 0.0293369977411,
  0.0256741818288, 0.0220844372634, 0.0185735200577, 0.0151490552854,
  0.0118216532614, 0.00860719483079, 0.00553245272614, 0.00265435214565
};

/*
 * (Ziggurat) tabulated values for 2^24 times x[i]/x[i+1], used to accept
 * for U*x[i+1]<=x[i] without any floating point operations
 */
const unsigned int Normal_RNG::ktab[128] = {
  0, 12590644, 14272653, 14988939,
  15384584, 15635009, 15807561, 15933577,
  16029594, 16105155, 16166147, 16216399,
  16258508, 16294295, 16325078, 16351831,
  16375291, 16396026, 16414479, 16431002,
  16445880, 16459343, 16471578, 16482744,
  16492970, 16502368, 16511031, 16519039,
  16526459, 16533352, 16539769, 16545755,
  16551348, 16556584, 16561493, 16566101,
  16570433, 16574511, 16578353, 16581977,
  16585398, 16588629, 16591685, 16594575,
  16597311, 16599901, 16602354, 16604679,
  16606881, 16608968, 16610945, 16612818,
  16614592, 16616272, 16617861, 16619363,
  16620782, 16622121, 16623383, 16624570,
  16625685, 16626730, 16627708, 16628619,
  16629465, 16630248, 16630969, 16631628,
  16632228, 16632768, 16633248, 16633671,
  16634034, 16634340, 16634586, 16634774,
  16634903, 16634972, 16634980, 16634926,
  16634810, 16634628, 16634381, 16634066,
  16633680, 16633222, 16632688, 16632075,
  16631380, 16630598, 16629726, 16628757,
  16627686, 16626507, 16625212, 16623794,
  16622243, 16620548, 16618698, 16616679,
  16614476, 16612071, 16609444, 16606571,
  16603425, 16599973, 16596178, 16591995,
  16587369, 16582237, 16576520, 16570120,
  16562917, 16554758, 16545450, 16534739,
  16522287, 16507638, 16490152, 16468907,
  16442518, 16408804, 16364095, 16301683,
  16207738, 16047994, 15704248, 15472926
};

// (Ziggurat) tabulated values of 2^{-24}*x[i]
const double Normal_RNG::wtab[128] = {
  1.62318314817e-08, 2.16291505214e-08, 2.54246305087e-08, 2.84579525938e-08,
  3.10340022482e-08, 3.33011726243e-08, 3.53439060345e-08, 3.72152672658e-08,
  3.8950989572e-08, 4.05763964764e-08, 4.21101548915e-08, 4.35664624904e-08,
  4.49563968336e-08, 4.62887864029e-08, 4.75707945735e-08, 4.88083237257e-08,
  5.00063025384e-08, 5.11688950428e-08, 5.22996558616e-08, 5.34016475624e-08,
  5.44775307871e-08, 5.55296344581e-08, 5.65600111659e-08, 5.75704813695e-08,
  5.85626690412e-08, 5.95380306862e-08, 6.04978791776e-08, 6.14434034901e-08,
  6.23756851626e-08, 6.32957121259e-08, 6.42043903937e-08, 6.51025540077e-08,
  6.59909735447e-08, 6.68703634341e-08, 6.77413882848e-08, 6.8604668381e-08,
  6.94607844804e-08, 7.03102820203e-08, 7.11536748229e-08, 7.1991448372e-08,
  7.2824062723e-08, 7.36519550992e-08, 7.44755422158e-08, 7.52952223703e-08,
  7.61113773308e-08, 7.69243740467e-08, 7.77345662086e-08, 7.85422956743e-08,
  7.93478937793e-08, 8.01516825471e-08, 8.09539758128e-08, 8.17550802699e-08,
  8.25552964535e-08, 8.33549196661e-08, 8.41542408569e-08, 8.49535474601e-08,
  8.57531242006e-08, 8.65532538723e-08, 8.73542180955e-08, 8.8156298059e-08,
  8.89597752521e-08, 8.97649321908e-08, 9.05720531451e-08, 9.138142487e-08,
  9.21933373471e-08, 9.30080845407e-08, 9.38259651738e-08, 9.46472835298e-08,
  9.54723502847e-08, 9.63014833769e-08, 9.71350089201e-08, 9.79732621669e-08,
  9.88165885297e-08, 9.96653446693e-08, 1.00519899658e-07, 1.0138063623e-07,
  1.02247952126e-07, 1.03122261554e-07, 1.04003996769e-07, 1.04893609795e-07,
  1.05791574313e-07, 1.06698387725e-07, 1.07614573423e-07, 1.08540683296e-07,
  1.09477300508e-07, 1.1042504257e-07, 1.11384564771e-07, 1.12356564007e-07,
  1.13341783071e-07, 1.14341015475e-07, 1.15355110887e-07, 1.16384981291e-07,
  1.17431607977e-07, 1.18496049514e-07, 1.19579450872e-07, 1.20683053909e-07,
  1.21808209468e-07, 1.2295639141e-07, 1.24129212952e-07, 1.25328445797e-07,
  1.26556042658e-07, 1.27814163916e-07, 1.29105209375e-07, 1.30431856341e-07,
  1.31797105598e-07, 1.3320433736e-07, 1.34657379914e-07, 1.36160594606e-07,
  1.37718982103e-07, 1.39338316679e-07, 1.41025317971e-07, 1.42787873535e-07,
  1.44635331499e-07, 1.4657889173e-07, 1.48632138436e-07, 1.50811780719e-07,
  1.53138707402e-07, 1.55639532047e-07, 1.58348931426e-07, 1.61313325908e-07,
  1.64596952856e-07, 1.68292495203e-07, 1.72541128694e-07, 1.77574279496e-07,
  1.83813550477e-07, 1.92166040885e-07, 2.05295471952e-07, 2.22600839893e-07
};

// (Ziggurat) position of right-most step
const double Normal_RNG::PARAM_R = 3.44428647676;

// Get a Normal distributed (0,1) sample
double Normal_RNG::sample()
{
  uint32_t u, sign, i, j;
  double x, y;

  while(true) {
    u = RNG.genrand_uint32();
    sign = u & 0x80;            // 1 bit for the sign
    i = u & 0x7f;               // 7 bits to choose the step
    j = u >> 8;                 // 24 bits for the x-value

    x = j * wtab[i];

    if(j < ktab[i])
      break;

    if(i < 127) {
      y = ytab[i + 1] + (ytab[i] - ytab[i + 1]) * RNG.genrand_close_open();
    }
    else {
      x = PARAM_R - std::log(1.0 - RNG.genrand_close_open()) / PARAM_R;
      y = std::exp(-PARAM_R * (x - 0.5 * PARAM_R)) * RNG.genrand_close_open();
    }

    if(y < std::exp(-0.5 * x * x))
      break;
  }
  return sign ? x : -x;
}


///////////////////////////////////////////////
// Laplace_RNG
///////////////////////////////////////////////

Laplace_RNG::Laplace_RNG(double meanval, double variance)
{
  setup(meanval, variance);
}

void Laplace_RNG::setup(double meanval, double variance)
{
  mean = meanval;
  var = variance;
  sqrt_12var = std::sqrt(variance / 2.0);
}

void Laplace_RNG::get_setup(double &meanval, double &variance) const
{
  meanval = mean;
  variance = var;
}



vec Laplace_RNG::operator()(int n)
{
  vec vv(n);

  for(int i = 0; i < n; i++)
    vv(i) = sample();

  return vv;
}

mat Laplace_RNG::operator()(int h, int w)
{
  mat mm(h, w);
  int i, j;

  for(i = 0; i < h; i++)
    for(j = 0; j < w; j++)
      mm(i, j) = sample();

  return mm;
}

///////////////////////////////////////////////
// AR1_Normal_RNG
///////////////////////////////////////////////

AR1_Normal_RNG::AR1_Normal_RNG(double meanval, double variance, double rho)
{
  setup(meanval, variance, rho);
}

void AR1_Normal_RNG::setup(double meanval, double variance, double rho)
{
  mean = meanval;
  var = variance;
  r = rho;
  factr = -2.0 * var * (1.0 - rho * rho);
  mem = 0.0;
  odd = true;
}

void AR1_Normal_RNG::get_setup(double &meanval, double &variance,
                               double &rho) const
{
  meanval = mean;
  variance = var;
  rho = r;
}

vec AR1_Normal_RNG::operator()(int n)
{
  vec vv(n);

  for(int i = 0; i < n; i++)
    vv(i) = sample();

  return vv;
}

mat AR1_Normal_RNG::operator()(int h, int w)
{
  mat mm(h, w);
  int i, j;

  for(i = 0; i < h; i++)
    for(j = 0; j < w; j++)
      mm(i, j) = sample();

  return mm;
}

void AR1_Normal_RNG::reset()
{
  mem = 0.0;
}

///////////////////////////////////////////////
// Weibull_RNG
///////////////////////////////////////////////

Weibull_RNG::Weibull_RNG(double lambda, double beta)
{
  setup(lambda, beta);
}

void Weibull_RNG::setup(double lambda, double beta)
{
  l = lambda;
  b = beta;
  mean = tgamma(1.0 + 1.0 / b) / l;
  var = tgamma(1.0 + 2.0 / b) / (l * l) - mean;
}


vec Weibull_RNG::operator()(int n)
{
  vec vv(n);

  for(int i = 0; i < n; i++)
    vv(i) = sample();

  return vv;
}

mat Weibull_RNG::operator()(int h, int w)
{
  mat mm(h, w);
  int i, j;

  for(i = 0; i < h; i++)
    for(j = 0; j < w; j++)
      mm(i, j) = sample();

  return mm;
}

///////////////////////////////////////////////
// Rayleigh_RNG
///////////////////////////////////////////////

Rayleigh_RNG::Rayleigh_RNG(double sigma)
{
  setup(sigma);
}

vec Rayleigh_RNG::operator()(int n)
{
  vec vv(n);

  for(int i = 0; i < n; i++)
    vv(i) = sample();

  return vv;
}

mat Rayleigh_RNG::operator()(int h, int w)
{
  mat mm(h, w);
  int i, j;

  for(i = 0; i < h; i++)
    for(j = 0; j < w; j++)
      mm(i, j) = sample();

  return mm;
}

///////////////////////////////////////////////
// Rice_RNG
///////////////////////////////////////////////

Rice_RNG::Rice_RNG(double lambda, double beta)
{
  setup(lambda, beta);
}

vec Rice_RNG::operator()(int n)
{
  vec vv(n);

  for(int i = 0; i < n; i++)
    vv(i) = sample();

  return vv;
}

mat Rice_RNG::operator()(int h, int w)
{
  mat mm(h, w);
  int i, j;

  for(i = 0; i < h; i++)
    for(j = 0; j < w; j++)
      mm(i, j) = sample();

  return mm;
}

} // namespace itpp