1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
|
/*!
* \file
* \brief Implementation of SISO modules for equalizers
* \author Bogdan Cristea
*
* -------------------------------------------------------------------------
*
* Copyright (C) 1995-2010 (see AUTHORS file for a list of contributors)
*
* This file is part of IT++ - a C++ library of mathematical, signal
* processing, speech processing, and communications classes and functions.
*
* IT++ is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* IT++ is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along
* with IT++. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include <itpp/comm/siso.h>
#include <limits>
#ifndef INFINITY
#define INFINITY std::numeric_limits<double>::infinity()
#endif
namespace itpp
{
void SISO::gen_chtrellis(void)
// generate trellis for precoded FIR channels with real coefficients
{
//get parameters
int mem_len = impulse_response.cols()-1;//memory length of the channel
int p_order = prec_gen.length()-1;//order of the precoder polynomial
//other variables
int n,k,j;
double inputs[] = {1.0,-1.0};//1->-1, 0->+1
int index;
double feedback[2];
//create channel trellis
int equiv_ch_mem_len = std::max(mem_len, p_order);
chtrellis.stateNb = (1<<equiv_ch_mem_len);
chtrellis.output = new double[2*chtrellis.stateNb];
chtrellis.nextState = new int[2*chtrellis.stateNb];
chtrellis.prevState = new int[2*chtrellis.stateNb];
chtrellis.input = new int[2*chtrellis.stateNb];
//initialize trellis
itpp::ivec enc_mem(equiv_ch_mem_len);
#pragma omp parallel for private(n,enc_mem,k,feedback,j)
for (n=0; n<chtrellis.stateNb; n++) //initial state
{
enc_mem = 1-2*itpp::to_ivec(itpp::dec2bin(equiv_ch_mem_len, n));//1->-1, 0->+1
//output
for (k=0; k<2; k++)
{
feedback[k] = inputs[k];
for (j=1; j<=p_order; j++)
if (prec_gen[j])
feedback[k] *= enc_mem[j-1];//xor truth table must remain the same
chtrellis.output[n+k*chtrellis.stateNb] = feedback[k]*impulse_response(0,0);
for (j=1; j<=mem_len; j++)
chtrellis.output[n+k*chtrellis.stateNb] += (enc_mem[j-1]*impulse_response(0,j));
}
//next state
for (j=(equiv_ch_mem_len-1); j>0; j--)
enc_mem[j] = enc_mem[j-1];
for (k=0; k<2; k++)
{
enc_mem[0] = int(feedback[k]);
chtrellis.nextState[n+k*chtrellis.stateNb] = itpp::bin2dec(itpp::to_bvec((1-enc_mem)/2), true);//-1->1, +1->0
}
}
#pragma omp parallel for private(j,index,n,k)
for (j=0; j<chtrellis.stateNb; j++)
{
index = 0;
for (n=0; n<chtrellis.stateNb; n++)
{
for (k=0; k<2; k++)
{
if (chtrellis.nextState[n+k*chtrellis.stateNb]==j)
{
chtrellis.prevState[j+index*chtrellis.stateNb] = n;
chtrellis.input[j+index*chtrellis.stateNb] = k;//this is an index to the channel input
index++;
}
}
}
}
}
void SISO::equalizer_logMAP(itpp::vec &extrinsic_data, const itpp::vec &rec_sig, const itpp::vec &apriori_data)
/*
extrinsic_data - extrinsic information of channel input symbols
rec_sig - received symbols
apriori_data - a priori information of channel input symbols
*/
{
//get parameters
int N = rec_sig.length();//length of the received frame
//other parameters
int n,k,m;
int pstates[2];
int nstates[2];
int inputs[2];
double C[2];//log(gamma)
double sum;
double sumbis;
double buffer;
//initialize trellis
gen_chtrellis();
//initialize log(alpha) and log(beta)
double* A = new double[chtrellis.stateNb*(N+1)];
double* B = new double[chtrellis.stateNb*(N+1)];
A[0] = 0;
B[N*chtrellis.stateNb] = 0;
sum = (tail?-INFINITY:0);
#pragma omp parallel for private(n)
for (n=1; n<chtrellis.stateNb; n++)
{
A[n] = -INFINITY;
B[n+N*chtrellis.stateNb] = sum;//if tail==false the final state is not known
}
#pragma omp parallel sections private(n,sum,m,k,C)
{
//forward recursion
for (n=1; n<=N; n++)
{
sum = 0;//normalisation factor
for (m=0; m<chtrellis.stateNb; m++) //final state
{
for (k=0; k<2; k++)
{
pstates[k] = chtrellis.prevState[m+chtrellis.stateNb*k];//determine previous states
inputs[k] = chtrellis.input[m+chtrellis.stateNb*k];//determine input
C[k] = (inputs[k])*apriori_data[n-1]-itpp::sqr(rec_sig[n-1]-chtrellis.output[pstates[k]+chtrellis.stateNb*inputs[k]])/(2*sigma2);//compute log of gamma
}
A[m+n*chtrellis.stateNb] = itpp::log_add(A[pstates[0]+(n-1)*chtrellis.stateNb]+C[0], A[pstates[1]+(n-1)*chtrellis.stateNb]+C[1]);
sum += std::exp(A[m+n*chtrellis.stateNb]);
}
//normalisation
sum = std::log(sum);
for (m=0; m<chtrellis.stateNb; m++)
{
A[m+n*chtrellis.stateNb] -= sum;
}
}
//backward recursion
#pragma omp section
for (n=N-1; n>=0; n--)
{
sum = 0;//normalisation factor
for (m=0; m<chtrellis.stateNb; m++) //initial state
{
for (k=0; k<2; k++)
{
nstates[k] = chtrellis.nextState[m+k*chtrellis.stateNb];//determine next states
C[k] = (k)*apriori_data[n]-itpp::sqr(rec_sig[n]-chtrellis.output[m+k*chtrellis.stateNb])/(2*sigma2);//compute log of gamma
}
B[m+n*chtrellis.stateNb] = itpp::log_add(B[nstates[0]+(n+1)*chtrellis.stateNb]+C[0], B[nstates[1]+(n+1)*chtrellis.stateNb]+C[1]);
sum += std::exp(B[m+n*chtrellis.stateNb]);
}
//normalisation
sum = std::log(sum);
for (m=0; m<chtrellis.stateNb; m++)
{
B[m+n*chtrellis.stateNb] -= sum;
}
}
}
//compute extrinsic_data
extrinsic_data.set_size(N);
#pragma omp parallel for private(n,sum,sumbis,m,k,nstates,C,buffer)
for (n=1; n<=N; n++)
{
sum = 0;//could be replaced by a vector
sumbis = 0;
for (m=0; m<chtrellis.stateNb; m++) //initial state
{
for (k=0; k<2; k++) //input index
{
nstates[k] = chtrellis.nextState[m+k*chtrellis.stateNb];//determine next states
C[k] = (k)*apriori_data[n-1]-itpp::sqr(rec_sig[n-1]-chtrellis.output[m+k*chtrellis.stateNb])/(2*sigma2);//compute log of gamma
buffer = std::exp(A[m+(n-1)*chtrellis.stateNb]+C[k]+B[nstates[k]+n*chtrellis.stateNb]);
if (k)
sum += buffer;//1
else
sumbis += buffer;//0
}
}
extrinsic_data[n-1] = std::log(sum/sumbis)-apriori_data[n-1];
}
//free memory
delete[] chtrellis.output;
delete[] chtrellis.nextState;
delete[] chtrellis.prevState;
delete[] chtrellis.input;
delete[] A;
delete[] B;
}
void SISO::equalizer_maxlogMAP(itpp::vec &extrinsic_data, const itpp::vec &rec_sig, const itpp::vec &apriori_data)
/*
extrinsic_data - extrinsic information for channel input symbols
rec_sig - received symbols
apriori_data - a priori information for channel input symbols
*/
{
//get parameters
int N = rec_sig.length();//length of the received frame
//other parameters
int n,k,m;
int pstates[2];
int nstates[2];
int inputs[2];
double C[2];//log(gamma)
double sum;
double sumbis;
double buffer;
//initialize trellis
gen_chtrellis();
//initialize log(alpha) and log(beta)
double* A = new double[chtrellis.stateNb*(N+1)];
double* B = new double[chtrellis.stateNb*(N+1)];
A[0] = 0;
for (n=1; n<chtrellis.stateNb; n++)
A[n] = -INFINITY;
B[N*chtrellis.stateNb] = 0;
sum = (tail?-INFINITY:0);
for (n=1; n<chtrellis.stateNb; n++)
B[n+N*chtrellis.stateNb] = sum;//if tail==false the final state is not known
#pragma omp parallel sections private(n,sum,m,k,C)
{
//forward recursion
for (n=1; n<=N; n++)
{
sum = -INFINITY;//normalization factor
for (m=0; m<chtrellis.stateNb; m++) //final state
{
for (k=0; k<2; k++)
{
pstates[k] = chtrellis.prevState[m+chtrellis.stateNb*k];//determine previous states
inputs[k] = chtrellis.input[m+chtrellis.stateNb*k];//determine input
C[k] = (inputs[k])*apriori_data[n-1]-itpp::sqr(rec_sig[n-1]-chtrellis.output[pstates[k]+chtrellis.stateNb*inputs[k]])/(2*sigma2);//compute log of gamma
}
A[m+n*chtrellis.stateNb] = std::max(A[pstates[0]+(n-1)*chtrellis.stateNb]+C[0], A[pstates[1]+(n-1)*chtrellis.stateNb]+C[1]);
sum = std::max(sum, A[m+n*chtrellis.stateNb]);
}
for (m=0; m<chtrellis.stateNb; m++)
A[m+n*chtrellis.stateNb] -= sum;
}
//backward recursion
#pragma omp section
for (n=N-1; n>=0; n--)
{
sum = -INFINITY;//normalisation factor
for (m=0; m<chtrellis.stateNb; m++) //initial state
{
for (k=0; k<2; k++)
{
nstates[k] = chtrellis.nextState[m+k*chtrellis.stateNb];//determine next states
C[k] = (k)*apriori_data[n]-itpp::sqr(rec_sig[n]-chtrellis.output[m+k*chtrellis.stateNb])/(2*sigma2);//compute log of gamma
}
B[m+n*chtrellis.stateNb] = std::max(B[nstates[0]+(n+1)*chtrellis.stateNb]+C[0], B[nstates[1]+(n+1)*chtrellis.stateNb]+C[1]);
sum = std::max(sum, B[m+n*chtrellis.stateNb]);
}
for (m=0; m<chtrellis.stateNb; m++)
B[m+n*chtrellis.stateNb] -= sum;
}
}
//compute extrinsic_data
extrinsic_data.set_size(N);
for (n=1; n<=N; n++)
{
sum = -INFINITY;
sumbis = -INFINITY;
for (m=0; m<chtrellis.stateNb; m++) //initial state
{
for (k=0; k<2; k++) //input index
{
nstates[k] = chtrellis.nextState[m+k*chtrellis.stateNb];//determine next states
C[k] = (k)*apriori_data[n-1]-itpp::sqr(rec_sig[n-1]-chtrellis.output[m+k*chtrellis.stateNb])/(2*sigma2);//compute log of gamma
buffer = A[m+(n-1)*chtrellis.stateNb]+C[k]+B[nstates[k]+n*chtrellis.stateNb];
if (k)
sum = std::max(sum, buffer);//1
else
sumbis = std::max(sumbis, buffer);//0
}
}
extrinsic_data[n-1] = (sum-sumbis)-apriori_data[n-1];
}
//free memory
delete[] chtrellis.output;
delete[] chtrellis.nextState;
delete[] chtrellis.prevState;
delete[] chtrellis.input;
delete[] A;
delete[] B;
}
}//end namespace tr
|