1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
|
/*!
* \file
* \brief Implementation of SISO modules for descrambler and MUDs
* \author Bogdan Cristea
*
* -------------------------------------------------------------------------
*
* Copyright (C) 1995-2010 (see AUTHORS file for a list of contributors)
*
* This file is part of IT++ - a C++ library of mathematical, signal
* processing, speech processing, and communications classes and functions.
*
* IT++ is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* IT++ is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along
* with IT++. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include <itpp/comm/siso.h>
#include <limits>
#ifndef INFINITY
#define INFINITY std::numeric_limits<double>::infinity()
#endif
namespace itpp
{
void SISO::descrambler(itpp::vec &extrinsic_coded, itpp::vec &extrinsic_data, const itpp::vec &intrinsic_coded, const itpp::vec &apriori_data)
/*
inputs:
intrinsic_coded - intrinsic information of coded bits (repetition code output)
apriori_data - a priori information of informational bits (repetition code input)
outputs:
extrinsic_coded - extrinsic information of coded bits
extrinsic_data - Logarithm of Likelihood Ratio of informational bits
*/
{
//get parameters
int nb_bits = apriori_data.length();
int Nc = scrambler_pattern.length();
//implementation
extrinsic_data.set_size(nb_bits);
extrinsic_coded.set_size(nb_bits*Nc);
int n,k;
#pragma omp parallel for private(n,k)
for (k=0; k<nb_bits; k++)
{
extrinsic_data[k] = 0;//apriori_data[k];//add a priori info
for (n=0; n<Nc; n++)
{
extrinsic_data[k] += (1-2*double(scrambler_pattern[n]))*intrinsic_coded[n+k*Nc];
}
for (n=0; n<Nc; n++)
{
extrinsic_coded[n+k*Nc] = (1-2*double(scrambler_pattern[n]))*extrinsic_data[k]-intrinsic_coded[n+k*Nc];
}
}
}
void SISO::zpFIRfilter(itpp::vec &filt, const itpp::vec &h, const itpp::vec &sig)
//FIR filter for a zero padded signal (L zeros are added at the end of the signal)
{
//get parameters
int L = h.length()-1;
int N = sig.length();
//implementation
int n,l;
#pragma omp parallel for private(n,l)
for (n=0; n<(N+L); n++)
{
filt[n] = 0;
for (l=0; l<=L; l++)
{
if ((n-l)<0)
{
break;//channel has state 0 at the beginning
}
if ((n-l)>=N)
{
continue;//channel has state 0 in the end
}
filt[n] += (h[l]*sig[n-l]);
}
}
}
void SISO::gen_hyperTrellis(void)
/* generates channel hyper trellis for binary symbols
* the channel is a MISO system
* BPSK mapping: 0->+1, 1->-1
*/
{
//get parameters
int nb_usr = impulse_response.rows();
int ch_order = impulse_response.cols()-1;
int p_order = prec_gen.length()-1;
int max_order = std::max(ch_order, p_order);
//initialize hypertrellis
chtrellis.numInputSymbols = itpp::pow2i(nb_usr);
int mem_len = nb_usr*max_order;
if (mem_len>=(int)(8*sizeof(int)))
{
std::string msg = "SISO::gen_hyperTrellis: memory length of the hyperchannel should be at most ";
msg += itpp::to_str(8*sizeof(int)-1);
msg += ". Try to lower the number of users, channel order or the order of the precoding polynomial (if any)";
print_err_msg(msg);
return;
}
chtrellis.stateNb = itpp::pow2i(mem_len);
try
{
unsigned int len = static_cast<unsigned int>(chtrellis.stateNb)*static_cast<unsigned int>(chtrellis.numInputSymbols);
chtrellis.nextState = new int[len];
chtrellis.prevState = new int[len];
chtrellis.output = new double[len];
chtrellis.input = new int[len];
} catch (std::bad_alloc)
{
std::string msg = "SISO::gen_hyperTrellis: not enough memory for the channel trellis variables. The number of states is ";
msg += itpp::to_str(chtrellis.stateNb);
msg += " and the number of input symbols ";
msg += itpp::to_str(chtrellis.numInputSymbols);
print_err_msg(msg);
return;
}
itpp::ivec index(chtrellis.stateNb);
index.zeros();
itpp::bvec hyper_ch_mem(mem_len);
itpp::bvec hyper_ch_in(nb_usr);
itpp::bvec hyper_states(mem_len);
itpp::bin feedback;
//create hypertrellis
int n,k,p,r;
int buffer;
double hyper_ch_out;
for (k=0; k<chtrellis.stateNb; k++)
{
hyper_ch_mem = itpp::dec2bin(mem_len, k);//initial state
for (n=0; n<chtrellis.numInputSymbols; n++)
{
hyper_ch_in = itpp::dec2bin(nb_usr, n);//MISO channel input
hyper_ch_out = 0;
for (r=0; r<nb_usr; r++)
{
buffer = r*max_order;
//precoder
feedback = hyper_ch_in[r];
for (p=1; p<=p_order; p++)
{
if (prec_gen(p))
{
feedback ^= hyper_ch_mem[p-1+buffer];//xor
}
}
//FIR channel output
hyper_ch_out += (1-2*double(feedback))*impulse_response(r,0);
for (p=0; p<ch_order; p++)
{
hyper_ch_out += (1-2*double(hyper_ch_mem[p+buffer]))*impulse_response(r,p+1);//hyper channel output for user r
}
//(equivalent) channel next state
hyper_states[buffer] = feedback;
for (p=0; p<(max_order-1); p++)
{
hyper_states[p+buffer+1] = hyper_ch_mem[p+buffer];//next hyper state for user r
}
}
chtrellis.output[k+n*chtrellis.stateNb] = hyper_ch_out;
buffer = itpp::bin2dec(hyper_states);//next state from an initial state and a given input
chtrellis.nextState[k+n*chtrellis.stateNb] = buffer;
chtrellis.prevState[buffer+index[buffer]*chtrellis.stateNb] = k;
chtrellis.input[buffer+index[buffer]*chtrellis.stateNb] = n;
index[buffer]++;
}
}
}
/// Maximum A Posteriori algorithm for Multi-User Detection in IDMA systems
/** uses max log MAP algorithm
* use with care for large number of users and/or FIR channel order
*/
void SISO::mud_maxlogMAP(itpp::mat &extrinsic_data, const itpp::vec &rec_sig, const itpp::mat &apriori_data)
/* output:
* extrinsic_data - extrinsic information for the chips (usr_nb x block_len)
* inputs:
* rec_sig - received signal (1 x block_len)
* apriori_data - a priori information for the chips (usr_nb x block_len)
*/
{
//get parameters
int nb_usr = apriori_data.rows();
int block_len = apriori_data.cols();
//init trellis
gen_hyperTrellis();
//initial conditions for A = log(alpha) and B = log(beta)
double *A = NULL,*B = NULL;
try
{
A = new double[chtrellis.stateNb*(block_len+1)];
B = new double[chtrellis.stateNb*(block_len+1)];
} catch (std::bad_alloc)
{
std::string msg = "SISO::mud_maxlogMAP: Not enough memory for alphas and betas. The number of states is ";
msg += itpp::to_str(chtrellis.stateNb);
msg += " and the block length ";
msg += itpp::to_str(block_len);
print_err_msg(msg);
}
int n;
A[0] = 0;
B[block_len*chtrellis.stateNb] = 0;
double buffer = (tail?-INFINITY:0);
#pragma omp parallel for private(n)
for (n=1; n<chtrellis.stateNb; n++)
{
A[n] = -INFINITY;
B[n+block_len*chtrellis.stateNb] = buffer;//if tail==false the final state is not known
}
//compute log(alpha) (forward recursion)
int s,k;
int sp,i;
itpp::bvec in_chips(nb_usr);
#pragma omp parallel sections private(n,buffer,s,k,sp,in_chips)
{
for (n=1; n<=block_len; n++)
{
buffer = -INFINITY;//normalization factor
for (s=0; s<chtrellis.stateNb; s++)
{
A[s+n*chtrellis.stateNb] = -INFINITY;
for (k=0; k<chtrellis.numInputSymbols; k++)
{
sp = chtrellis.prevState[s+k*chtrellis.stateNb];
i = chtrellis.input[s+k*chtrellis.stateNb];
in_chips = itpp::dec2bin(nb_usr, i);
A[s+n*chtrellis.stateNb] = std::max(A[s+n*chtrellis.stateNb], \
A[sp+(n-1)*chtrellis.stateNb]-itpp::sqr(rec_sig[n-1]-chtrellis.output[sp+i*chtrellis.stateNb])/(2*sigma2)+\
itpp::to_vec(in_chips)*apriori_data.get_col(n-1));
}
buffer = std::max(buffer, A[s+n*chtrellis.stateNb]);
}
//normalization
for (s=0; s<chtrellis.stateNb; s++)
{
A[s+n*chtrellis.stateNb] -= buffer;
}
}
//compute log(beta) (backward recursion)
#pragma omp section
for (n=block_len-1; n>=0; n--)
{
buffer = -INFINITY;//normalization factor
for (s=0; s<chtrellis.stateNb; s++)
{
B[s+n*chtrellis.stateNb] = -INFINITY;
for (k=0; k<chtrellis.numInputSymbols; k++)
{
sp = chtrellis.nextState[s+k*chtrellis.stateNb];
in_chips = itpp::dec2bin(nb_usr, k);
B[s+n*chtrellis.stateNb] = std::max(B[s+n*chtrellis.stateNb], \
B[sp+(n+1)*chtrellis.stateNb]-itpp::sqr(rec_sig[n]-chtrellis.output[s+k*chtrellis.stateNb])/(2*sigma2)+\
itpp::to_vec(in_chips)*apriori_data.get_col(n));
}
buffer = std::max(buffer, B[s+n*chtrellis.stateNb]);
}
//normalization
for (s=0; s<chtrellis.stateNb; s++)
{
B[s+n*chtrellis.stateNb] -= buffer;
}
}
}
//compute extrinsic information
double nom, denom;
extrinsic_data.set_size(nb_usr,block_len);
int u;
#pragma omp parallel for private(u,n,s,k,nom,denom,in_chips,buffer)
for (u=0; u<nb_usr; u++)
{
for (n=1; n<=block_len; n++)
{
nom = -INFINITY;
denom = -INFINITY;
for (s=0; s<chtrellis.stateNb; s++)
{
for (k=0; k<chtrellis.numInputSymbols; k++)
{
in_chips = itpp::dec2bin(nb_usr, k);
buffer = A[s+(n-1)*chtrellis.stateNb]+B[chtrellis.nextState[s+k*chtrellis.stateNb]+n*chtrellis.stateNb]-\
itpp::sqr(rec_sig[n-1]-chtrellis.output[s+k*chtrellis.stateNb])/(2*sigma2)+\
itpp::to_vec(in_chips)*apriori_data.get_col(n-1);
if (in_chips[u])
{
nom = std::max(nom, buffer);
}
else
{
denom = std::max(denom, buffer);
}
}
}
extrinsic_data(u,n-1) = (nom-denom)-apriori_data(u,n-1);
}
}
//free memory
delete[] chtrellis.nextState;
delete[] chtrellis.prevState;
delete[] chtrellis.output;
delete[] chtrellis.input;
delete[] A;
delete[] B;
}
/// Gaussian Chip Detector for IDMA systems
/** Use with care for large size of interleavers.
*/
void SISO::GCD(itpp::mat &extrinsic_data, const itpp::vec &rec_sig, const itpp::mat &apriori_data)
/* Gaussian Chip Detector
* output:
* extrinsic_data - extrinsic information of emitted chips
* inputs:
* rec_sig - received signal
* apriori_data - a priori information of emitted chips
*/
{
//get parameters
int N = apriori_data.cols();//emitted frames of non-zero samples
int K = apriori_data.rows();//number of users
int L = impulse_response.cols()-1;//channel order
//other parameters
int n,k;
//mean and variance of each chip (NxK)
itpp::mat Ex = -itpp::tanh(apriori_data/2.0);//take into account BPSK mapping
itpp::mat Vx = 1.0-sqr(Ex);
//expectation and variance of the received signal
itpp::vec Er(N+L);
Er.zeros();
itpp::mat Covr;
try
{
Covr.set_size(N+L,N+L);
} catch (std::bad_alloc)
{
std::string msg = "SISO::GCD: not enough memory when allocating space for the covariance matrix. The interleaver length is ";
msg += itpp::to_str(N);
msg += ". Use sGCD instead or try to reduce the interleaver length";
print_err_msg(msg);
return;
}
//create eye function
Covr.zeros();
for (n=0; n<(N+L); n++)
Covr(n,n) = 1;
itpp::vec col(N+L);
col.zeros();
itpp::vec row(N);
row.zeros();
itpp::mat h_eq(N+L,N);
for (k=0; k<K; k++)
{
col.replace_mid(0, impulse_response.get_row(k));
row(0) = impulse_response(k,0);
h_eq = itpp::toeplitz(col, row);
Er += h_eq*Ex.get_row(k);
Covr += (h_eq*itpp::diag(Vx.get_row(k)))*h_eq.T();
}
//extrinsic information
double nom,denom;
Er = rec_sig-Er;
itpp::mat inv_Covr(N+L,N+L);
inv_Covr = itpp::inv(Covr);
itpp::mat inv_cov_zeta(N+L,N+L);
itpp::vec rec_chip(N+L);
extrinsic_data.set_size(K,N);
for (k=0; k<K; k++)
{
#pragma omp parallel for private(n,inv_cov_zeta,rec_chip,nom,denom) firstprivate(col)
for (n=0; n<N; n++)
{
col.replace_mid(n, impulse_response.get_row(k));
inv_cov_zeta = inv_Covr+itpp::outer_product(inv_Covr*col, inv_Covr.T()*(col*Vx(k,0)))/(1-(col*Vx(k,0))*(inv_Covr*col));
rec_chip = Er-col*(+1-Ex(k,n));
nom = -0.5*rec_chip*(inv_cov_zeta*rec_chip);
rec_chip = Er-col*(-1-Ex(k,n));
denom = -0.5*rec_chip*(inv_cov_zeta*rec_chip);
extrinsic_data(k,n) = denom-nom;//take into account BPSK mapping
col(n) = 0;
}
}
}
/// simplified Gaussian Chip Detector for IDMA systems
/** This algorithm is simplified and uses much less memory than its counterpart, the GCD.
* Recommended to use in most cases.
*/
void SISO::sGCD(itpp::mat &extrinsic_data, const itpp::vec &rec_sig, const itpp::mat &apriori_data)
/* simplified GCD
* output:
* extrinsic_data - extrinsic information of emitted chips
* inputs:
* rec_sig - received signal
* apriori_data - a priori information of emitted chips
*/
{
//get parameters
int N = apriori_data.cols();//emitted frames of non-zero samples
int K = apriori_data.rows();//number of users
int L = impulse_response.cols()-1;//channel order
//other parameters
int n,k;
//mean and variance of each chip (NxK)
itpp::mat Ex = -itpp::tanh(apriori_data/2.0);//take into account BPSK mapping
itpp::mat Vx = 1.0-itpp::sqr(Ex);
//mean and variance for the samples of the received signal
itpp::vec Er(N+L);
Er.zeros();
itpp::vec Vr = sigma2*itpp::ones(N+L);
itpp::vec buffer(N+L);
for (k=0; k<K; k++)
{
zpFIRfilter(buffer, impulse_response.get_row(k), Ex.get_row(k));
Er += buffer;
zpFIRfilter(buffer, itpp::sqr(impulse_response.get_row(k)), Vx.get_row(k));
Vr += buffer;
}
//extrinsic information for the samples of the received signal
Er = rec_sig-Er;
itpp::vec ch(L+1);
extrinsic_data.set_size(K,N);
for (k=0; k<K; k++)
{
ch = impulse_response.get_row(k);
#pragma omp parallel for private(n)
for (n=0; n<N; n++)
{
extrinsic_data(k,n) = -2*itpp::elem_div(ch, Vr.mid(n,L+1)-sqr(ch)*Vx(k,n))*(Er.mid(n,L+1)+ch*Ex(k,n));//take into account BPSK mapping
}
}
}
}//end namespace tr
|