1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
|
/*!
* \file
* \brief Fourier, Cosine, Hadamard, Walsh-Hadamard, and 2D Hadamard
* transforms - source file
* \author Tony Ottosson, Thomas Eriksson, Simon Wood, Adam Piatyszek, Andy Panov and Bogdan Cristea
*
* -------------------------------------------------------------------------
*
* Copyright (C) 1995-2013 (see AUTHORS file for a list of contributors)
*
* This file is part of IT++ - a C++ library of mathematical, signal
* processing, speech processing, and communications classes and functions.
*
* IT++ is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* IT++ is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along
* with IT++. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef _MSC_VER
# include <itpp/config.h>
#else
# include <itpp/config_msvc.h>
#endif
#if defined(HAVE_FFT_MKL)
#include <stdio.h>
#include <stdlib.h>
namespace mkl
{
# include <mkl_dfti.h>
# include <mkl_service.h>
# undef DftiCreateDescriptor
}
#elif defined(HAVE_FFT_ACML)
namespace acml
{
# include <acml.h>
}
#elif defined(HAVE_FFTW3)
# include <fftw3.h>
#endif
#include <itpp/signal/transforms.h>
//! \cond
//multithreading mode selector
enum MultithreadingTag {SingleThreaded = 1, OmpThreaded};
#ifdef _OPENMP
#include <omp.h>
static const MultithreadingTag ThreadingTag = OmpThreaded;
//number of context records kept per transform type
//see comments for Transform_Provider class for futher details
static const int contexts_per_transform_type = 10;
//specialize mutex for multi-threaded code with OMP
class Mutex
{
omp_lock_t _lck;
//disable copy-construction and assignment
Mutex(const Mutex&);
Mutex& operator=(const Mutex&);
public:
Mutex() {omp_init_lock(&_lck);}
~Mutex() {omp_destroy_lock(&_lck);}
//lock the mutex
void lock() {omp_set_lock(&_lck);}
//try to lock. returns true if ownership is taken
bool try_lock() {return (omp_test_lock(&_lck)) != 0;}
//unlock
void unlock() {omp_unset_lock(&_lck);}
};
#else
static const MultithreadingTag ThreadingTag = SingleThreaded;
//number of context records kept per transform type
//see comments for Transform_Provider class for futher details
static const int contexts_per_transform_type = 1;
//specialize mutex for single-threaded code
class Mutex
{
//disable copy-construction and assignment
Mutex(const Mutex&);
Mutex& operator=(const Mutex&);
public:
Mutex() {}
~Mutex() {}
void lock() {}
bool try_lock() {return true;}
void unlock() {}
};
#endif
//mutex-based lock
class Lock
{
Mutex& _m;
//disable copy-construction and assignment
Lock(const Lock&);
Lock& operator=(const Lock&);
public:
Lock(Mutex& m): _m(m) {_m.lock();}
~Lock() {_m.unlock();}
};
namespace itpp
{
//define traits for all supported transform types: FFT complex, FFT real, IFFT Complex, IFFT Real, DCT, IDCT
struct FFTCplx_Traits {
typedef cvec InType;
typedef cvec OutType;
};
struct IFFTCplx_Traits {
typedef cvec InType;
typedef cvec OutType;
};
struct FFTReal_Traits {
typedef vec InType;
typedef cvec OutType;
};
struct IFFTReal_Traits {
typedef cvec InType;
typedef vec OutType;
};
struct DCT_Traits {
typedef vec InType;
typedef vec OutType;
};
struct IDCT_Traits {
typedef vec InType;
typedef vec OutType;
};
//generic transforms implementation based on transform type and specific FFT library
template<typename TransformTraits> class Transform;
//FFT library initializer based on mutithreading model
template<MultithreadingTag> inline void init_fft_library();
#if defined(HAVE_FFT_MKL)
//MKL-specific implementations
//MKL FFT-related notes:
//If multithreading is enabled on ITPP level (and in user's code) MKL FFT descriptors can be created, committed and freed by multiple threads
//In this case Intel recommends to use single-threaded FFT implementation:
//1. "Intel MKL 10.x threading", http://software.intel.com/en-us/articles/intel-mkl-10x-threading,
//2. "Examples of Using Multi-Threading for FFT Computation", http://software.intel.com/sites/products/documentation/hpc/mkl/mklman/GUID-00422EBE-93C3-4BC9-A621-9BF0A0E93888.htm
//Based on examples, provided by Intel, it seems to be safe to create/commit/free and run FFT on per-thread descriptor
//without additional locking
template<> inline void init_fft_library<SingleThreaded>() {} //assume no actions required. ITPP does not use threading, so FFT library is free to use it's own threading implementation
template<> inline void init_fft_library<OmpThreaded>()
{
//switch FFT domain of MKL to single-threaded mode as Intel suggests
//this should work starting from MKL 10.0
mkl::mkl_domain_set_num_threads(1, MKL_FFT);
}
//---------------------------------------------------------------------------
// FFT/IFFT based on MKL
//---------------------------------------------------------------------------
inline void release_descriptor(mkl::DFTI_DESCRIPTOR* h)
{
if(h != NULL) {
MKL_LONG status = mkl::DftiFreeDescriptor(&h);
if(status) {
it_info(mkl::DftiErrorMessage(status));
it_error("MKL library release_descriptor() failed on DftiFreeDescriptor.");
}
}
}
template<> class Transform<FFTCplx_Traits>
{
mkl::DFTI_DESCRIPTOR* _h;
int _transform_length;
public:
Transform(): _h(NULL), _transform_length(0) {}
void compute_transform(const cvec &in, cvec &out) {
out.set_size(in.size(), false);
if(_transform_length != in.size()) {
release_descriptor(_h);
_transform_length = in.size();
MKL_LONG status = mkl::DftiCreateDescriptor(&_h, mkl::DFTI_DOUBLE, mkl::DFTI_COMPLEX, 1, _transform_length);
if(status) {
it_info(mkl::DftiErrorMessage(status));
it_error("MKL library compute_transform() failed on DftiCreateDescriptor.");
}
mkl::DftiSetValue(_h, mkl::DFTI_PLACEMENT, mkl::DFTI_NOT_INPLACE);
status = mkl::DftiCommitDescriptor(_h);
if(status) {
it_info(mkl::DftiErrorMessage(status));
it_error("MKL library compute_transform() failed on DftiCommitDescriptor.");
}
}
mkl::DftiComputeForward(_h, (void *)in._data(), out._data());
}
void reset() {release_descriptor(_h); *this = Transform();}
};
template<> class Transform<IFFTCplx_Traits>
{
mkl::DFTI_DESCRIPTOR* _h;
int _transform_length;
public:
Transform(): _h(NULL), _transform_length(0) {}
void compute_transform(const cvec &in, cvec &out) {
out.set_size(in.size(), false);
if(_transform_length != in.size()) {
release_descriptor(_h);
_transform_length = in.size();
MKL_LONG status = mkl::DftiCreateDescriptor(&_h, mkl::DFTI_DOUBLE, mkl::DFTI_COMPLEX, 1, _transform_length);
if(status) {
it_info(mkl::DftiErrorMessage(status));
it_error("MKL library compute_transform() failed on DftiCreateDescriptor.");
}
mkl::DftiSetValue(_h, mkl::DFTI_PLACEMENT, mkl::DFTI_NOT_INPLACE);
mkl::DftiSetValue(_h, mkl::DFTI_BACKWARD_SCALE, 1.0 / _transform_length);
status = mkl::DftiCommitDescriptor(_h);
if(status) {
it_info(mkl::DftiErrorMessage(status));
it_error("MKL library compute_transform() failed on DftiCommitDescriptor.");
}
}
mkl::DftiComputeBackward(_h, (void *)in._data(), out._data());
}
void reset() {release_descriptor(_h); *this = Transform();}
};
template<> class Transform<FFTReal_Traits>
{
mkl::DFTI_DESCRIPTOR* _h;
int _transform_length;
public:
Transform(): _h(NULL), _transform_length(0) {}
void compute_transform(const vec &in, cvec &out) {
out.set_size(in.size(), false);
if(_transform_length != in.size()) {
release_descriptor(_h);
_transform_length = in.size();
MKL_LONG status = mkl::DftiCreateDescriptor(&_h, mkl::DFTI_DOUBLE, mkl::DFTI_REAL, 1, _transform_length);
if(status) {
it_info(mkl::DftiErrorMessage(status));
it_error("MKL library compute_transform() failed on DftiCreateDescriptor.");
}
mkl::DftiSetValue(_h, mkl::DFTI_PLACEMENT, mkl::DFTI_NOT_INPLACE);
status = mkl::DftiCommitDescriptor(_h);
if(status) {
it_info(mkl::DftiErrorMessage(status));
it_error("MKL library compute_transform() failed on DftiCommitDescriptor.");
}
}
mkl::DftiComputeForward(_h, (void *)in._data(), out._data());
// Real FFT does not compute the 2nd half of the FFT points because it
// is redundant to the 1st half. However, we want all of the data so we
// fill it in. This is consistent with Matlab's functionality
int istart = ceil_i(in.size() / 2.0);
int idelta = in.size() - istart;
out.set_subvector(istart, reverse(conj(out(1, idelta))));
}
void reset() {release_descriptor(_h); *this = Transform();}
};
template<> class Transform<IFFTReal_Traits>
{
mkl::DFTI_DESCRIPTOR* _h;
int _transform_length;
public:
Transform(): _h(NULL), _transform_length(0) {}
void compute_transform(const cvec &in, vec &out) {
out.set_size(in.size(), false);
if(_transform_length != in.size()) {
release_descriptor(_h);
_transform_length = in.size();
MKL_LONG status = mkl::DftiCreateDescriptor(&_h, mkl::DFTI_DOUBLE, mkl::DFTI_REAL, 1, _transform_length);
if(status) {
it_info(mkl::DftiErrorMessage(status));
it_error("MKL library compute_transform() failed on DftiCreateDescriptor.");
}
mkl::DftiSetValue(_h, mkl::DFTI_PLACEMENT, mkl::DFTI_NOT_INPLACE);
mkl::DftiSetValue(_h, mkl::DFTI_BACKWARD_SCALE, 1.0 / _transform_length);
status = mkl::DftiCommitDescriptor(_h);
if(status) {
it_info(mkl::DftiErrorMessage(status));
it_error("MKL library compute_transform() failed on DftiCommitDescriptor.");
}
}
mkl::DftiComputeBackward(_h, (void *)in._data(), out._data());
}
void reset() {release_descriptor(_h); *this = Transform();}
};
#endif // #ifdef HAVE_FFT_MKL
#if defined(HAVE_FFT_ACML)
//ACML-specific implementations
//ACML FFT-related notes:
//ACML documentation is not very verbose regarding the multithreaded use of the library, but multithreaded ifort-built ACML uses
//OMP internally. AMD recommends linking with SINGLE-THREADED library if OMP is enabled in user's code. Also, they claim that
//single-threaded functions can be used from the multiple threads simultaniously (see http://devgurus.amd.com/thread/141592 for
//multi-threading discussion on AMD dev forums) The thread-safety of library functions is also mentioned in ACML release notes (ver 4.4.0).
//In the following implementation we assume that ACML transform functions can be run simultaneously from different threads safely if they operate
//on different data sets.
template<> inline void init_fft_library<SingleThreaded>() {} //assume no actions required.
template<> inline void init_fft_library<OmpThreaded>() {}
//---------------------------------------------------------------------------
// FFT/IFFT based on ACML
//---------------------------------------------------------------------------
template<> class Transform<FFTCplx_Traits>
{
cvec _scratchpad;
int _transform_length;
public:
Transform(): _transform_length(0) {}
void compute_transform(const cvec &in, cvec &out) {
int info;
out.set_size(in.size(), false);
if(_transform_length != in.size()) {
_transform_length = in.size();
int min_required_size = 5 * _transform_length + 100; //ACML guides suggest 3*size + 100 here, but ITPP code uses 5.
if(_scratchpad.size() < min_required_size) _scratchpad.set_size(min_required_size);
acml::zfft1dx(0, 1.0, false, _transform_length, (acml::doublecomplex *)in._data(), 1,
(acml::doublecomplex *)out._data(), 1,
(acml::doublecomplex *)_scratchpad._data(), &info);
}
acml::zfft1dx(-1, 1.0, false, _transform_length, (acml::doublecomplex *)in._data(), 1,
(acml::doublecomplex *)out._data(), 1,
(acml::doublecomplex *)_scratchpad._data(), &info);
}
void reset() {*this = Transform();}
};
template<> class Transform<IFFTCplx_Traits>
{
cvec _scratchpad;
int _transform_length;
public:
Transform(): _transform_length(0) {}
void compute_transform(const cvec &in, cvec &out) {
int info;
out.set_size(in.size(), false);
if(_transform_length != in.size()) {
_transform_length = in.size();
int min_required_size = 5 * _transform_length + 100; //ACML guides suggest 3*size + 100 here, but ITPP code uses 5.
if(_scratchpad.size() < min_required_size) _scratchpad.set_size(min_required_size);
acml::zfft1dx(0, 1.0 / _transform_length, false, _transform_length, (acml::doublecomplex *)in._data(), 1,
(acml::doublecomplex *)out._data(), 1,
(acml::doublecomplex *)_scratchpad._data(), &info);
}
acml::zfft1dx(1, 1.0 / _transform_length, false, _transform_length, (acml::doublecomplex *)in._data(), 1,
(acml::doublecomplex *)out._data(), 1,
(acml::doublecomplex *)_scratchpad._data(), &info);
}
void reset() {*this = Transform();}
};
template<> class Transform<FFTReal_Traits>
{
vec _scratchpad;
int _transform_length;
public:
Transform(): _transform_length(0) {}
void compute_transform(const vec &in, cvec &out) {
vec out_re = in;
int info;
if(_transform_length != in.size()) {
_transform_length = in.size();
int min_required_size = 5 * _transform_length + 100; //ACML guides suggest 3*size + 100 here, but ITPP code uses 5.
if(_scratchpad.size() < min_required_size) _scratchpad.set_size(min_required_size);
acml::dzfft(0, _transform_length, out_re._data(), _scratchpad._data(), &info);
}
acml::dzfft(1, _transform_length, out_re._data(), _scratchpad._data(), &info);
// Normalise output data
double factor = std::sqrt(static_cast<double>(_transform_length));
out_re *= factor;
// Convert the real Hermitian DZFFT's output to the Matlab's complex form
vec out_im(_transform_length);
out_im(0) = 0.0;
if(!(_transform_length % 2)) out_im(_transform_length / 2) = 0.0; //even transform length
out_im.set_subvector(1, reverse(out_re(_transform_length / 2 + 1, _transform_length - 1)));
out_im.set_subvector(_transform_length / 2 + 1, -out_re(_transform_length / 2 + 1, _transform_length - 1));
out_re.set_subvector(_transform_length / 2 + 1, reverse(out_re(1, (_transform_length - 1) / 2)));
out.set_size(_transform_length, false);
out = to_cvec(out_re, out_im);
}
void reset() {*this = Transform();}
};
template<> class Transform<IFFTReal_Traits>
{
vec _scratchpad;
int _transform_length;
public:
Transform(): _transform_length(0) {}
void compute_transform(const cvec &in, vec &out) {
// Convert Matlab's complex input to the real Hermitian form
out.set_size(in.size());
out.set_subvector(0, real(in(0, in.size() / 2)));
out.set_subvector(in.size() / 2 + 1, -imag(in(in.size() / 2 + 1, in.size() - 1)));
int info;
if(_transform_length != in.size()) {
_transform_length = in.size();
int min_required_size = 5 * _transform_length + 100; //ACML guides suggest 3*size + 100 here, but ITPP code uses 5.
if(_scratchpad.size() < min_required_size) _scratchpad.set_size(min_required_size);
acml::zdfft(0, _transform_length, out._data(), _scratchpad._data(), &info);
}
acml::zdfft(1, _transform_length, out._data(), _scratchpad._data(), &info);
out.set_subvector(1, reverse(out(1, _transform_length - 1)));
// Normalise output data
double factor = 1.0 / std::sqrt(static_cast<double>(_transform_length));
out *= factor;
}
void reset() {*this = Transform();}
};
#endif // defined(HAVE_FFT_ACML)
#if defined(HAVE_FFTW3)
//FFTW3-specific implementations
//FFTW3-related notes:
//Based on the FFtW3 documentation, it is thread-safe to call fftw_execute family functions simultaniously from several threads assuming that data sets are different in each thread.
//FFTW plans creation-destruction is not thread-safe and should be serialized by the caller. FFTW provides some functions to execute transforms with multiple threads (assuming FFTW
// is compiled and linked with multithreading support). Current ITPP implementation does not use any of them.
template<> inline void init_fft_library<SingleThreaded>() {} //assume no actions required.
template<> inline void init_fft_library<OmpThreaded>() {}
//define global lock for operations with FFTW plans.
Mutex& get_library_lock()
{
static Mutex FFTW3LibraryLock;
return FFTW3LibraryLock;
}
//---------------------------------------------------------------------------
// FFT/IFFT based on FFTW
//---------------------------------------------------------------------------
inline void destroy_plan(fftw_plan p)
{
if(p != NULL) fftw_destroy_plan(p); // destroy the plan
}
template<> class Transform<FFTCplx_Traits>
{
fftw_plan _p;
int _transform_length;
public:
Transform(): _p(NULL), _transform_length(0) {}
void compute_transform(const cvec &in, cvec &out) {
out.set_size(in.size(), false);
if(_transform_length != in.size()) {
Lock l(get_library_lock()); //apply global library lock on plan changes
_transform_length = in.size();
destroy_plan(_p); // destroy the previous plan
// create a new plan (creation of plan guarantees not to return NULL)
_p = fftw_plan_dft_1d(_transform_length, (fftw_complex *)in._data(),
(fftw_complex *)out._data(),
FFTW_FORWARD, FFTW_ESTIMATE);
}
//compute FFT using the GURU FFTW interface
fftw_execute_dft(_p, (fftw_complex *)in._data(),
(fftw_complex *)out._data());
}
void reset() {destroy_plan(_p); *this = Transform();}
};
template<> class Transform<IFFTCplx_Traits>
{
fftw_plan _p;
int _transform_length;
public:
Transform(): _p(NULL), _transform_length(0) {}
void compute_transform(const cvec &in, cvec &out) {
out.set_size(in.size(), false);
if(_transform_length != in.size()) {
Lock l(get_library_lock()); //apply global library lock on plan changes
_transform_length = in.size();
destroy_plan(_p); // destroy the previous plan
// create a new plan (creation of plan guarantees not to return NULL)
_p = fftw_plan_dft_1d(_transform_length, (fftw_complex *)in._data(),
(fftw_complex *)out._data(),
FFTW_BACKWARD, FFTW_ESTIMATE);
}
//compute FFT using the GURU FFTW interface
fftw_execute_dft(_p, (fftw_complex *)in._data(),
(fftw_complex *)out._data());
// scale output
double inv_N = 1.0 / _transform_length;
out *= inv_N;
}
void reset() {destroy_plan(_p); *this = Transform();}
};
template<> class Transform<FFTReal_Traits>
{
fftw_plan _p;
int _transform_length;
public:
Transform(): _p(NULL), _transform_length(0) {}
void compute_transform(const vec &in, cvec &out) {
out.set_size(in.size(), false);
if(_transform_length != in.size()) {
Lock l(get_library_lock()); //apply global library lock on plan changes
_transform_length = in.size();
destroy_plan(_p); // destroy the previous plan
// create a new plan (creation of plan guarantees not to return NULL)
_p = fftw_plan_dft_r2c_1d(_transform_length, (double *)in._data(),
(fftw_complex *)out._data(),
FFTW_ESTIMATE);
}
//compute FFT using the GURU FFTW interface
fftw_execute_dft_r2c(_p, (double *)in._data(),
(fftw_complex *)out._data());
// Real FFT does not compute the 2nd half of the FFT points because it
// is redundant to the 1st half. However, we want all of the data so we
// fill it in. This is consistent with Matlab's functionality
int offset = ceil_i(_transform_length / 2.0);
int n_elem = _transform_length - offset;
for(int i = 0; i < n_elem; ++i) {
out(offset + i) = std::conj(out(n_elem - i));
}
}
void reset() {destroy_plan(_p); *this = Transform();}
};
template<> class Transform<IFFTReal_Traits>
{
fftw_plan _p;
int _transform_length;
public:
Transform(): _p(NULL), _transform_length(0) {}
void compute_transform(const cvec &in, vec &out) {
out.set_size(in.size(), false);
if(_transform_length != in.size()) {
Lock l(get_library_lock()); //apply global library lock on plan changes
_transform_length = in.size();
destroy_plan(_p); // destroy the previous plan
// create a new plan (creation of plan guarantees not to return NULL)
_p = fftw_plan_dft_c2r_1d(_transform_length, (fftw_complex *)in._data(),
(double *)out._data(),
FFTW_ESTIMATE | FFTW_PRESERVE_INPUT);
}
//compute FFT using the GURU FFTW interface
fftw_execute_dft_c2r(_p, (fftw_complex *)in._data(),
(double *)out._data());
// scale output
double inv_N = 1.0 / _transform_length;
out *= inv_N;
}
void reset() {destroy_plan(_p); *this = Transform();}
};
//---------------------------------------------------------------------------
// DCT/IDCT based on FFTW
//---------------------------------------------------------------------------
template<> class Transform<DCT_Traits>
{
fftw_plan _p;
int _transform_length;
public:
Transform(): _p(NULL), _transform_length(0) {}
void compute_transform(const vec &in, vec &out) {
out.set_size(in.size(), false);
if(_transform_length != in.size()) {
Lock l(get_library_lock()); //apply global library lock on plan changes
_transform_length = in.size();
destroy_plan(_p); // destroy the previous plan
// create a new plan (creation of plan guarantees not to return NULL)
_p = fftw_plan_r2r_1d(_transform_length, (double *)in._data(),
(double *)out._data(),
FFTW_REDFT10, FFTW_ESTIMATE);
}
// compute FFT using the GURU FFTW interface
fftw_execute_r2r(_p, (double *)in._data(), (double *)out._data());
// Scale to matlab definition format
out /= std::sqrt(2.0 * _transform_length);
out(0) /= std::sqrt(2.0);
}
void reset() {destroy_plan(_p); *this = Transform();}
};
template<> class Transform<IDCT_Traits>
{
fftw_plan _p;
int _transform_length;
public:
Transform(): _p(NULL), _transform_length(0) {}
void compute_transform(const vec &in, vec &out) {
out = in;
// Rescale to FFTW format
out(0) *= std::sqrt(2.0);
out /= std::sqrt(2.0 * in.size());
if(_transform_length != in.size()) {
Lock l(get_library_lock()); //apply global library lock on plan changes
_transform_length = in.size();
destroy_plan(_p); // destroy the previous plan
// create a new plan (creation of plan guarantees not to return NULL)
_p = fftw_plan_r2r_1d(_transform_length, (double *)in._data(),
(double *)out._data(),
FFTW_REDFT01, FFTW_ESTIMATE);
}
// compute FFT using the GURU FFTW interface
fftw_execute_r2r(_p, (double *)out._data(), (double *)out._data());
}
void reset() {destroy_plan(_p); *this = Transform();}
};
#endif // defined(HAVE_FFTW3)
#if defined(HAVE_FFT_MKL) || defined(HAVE_FFT_ACML)
//---------------------------------------------------------------------------
// DCT/IDCT based on MKL or ACML
//---------------------------------------------------------------------------
//use FFT on real values to perform DCT
template<> class Transform<DCT_Traits>
{
Transform<FFTReal_Traits> _tr;
public:
Transform() {}
void compute_transform(const vec &in, vec &out) {
int N = in.size();
if(N == 1)
out = in;
else {
cvec c;
_tr.compute_transform(concat(in, reverse(in)), c);
c.set_size(N, true);
for(int i = 0; i < N; i++) {
c(i) *= std::complex<double>(std::cos(pi * i / N / 2), std::sin(-pi * i / N / 2))
/ std::sqrt(2.0 * N);
}
out = real(c);
out(0) /= std::sqrt(2.0);
}
}
void reset() {_tr.reset();}
};
//use IFFT with real output to perform IDCT
template<> class Transform<IDCT_Traits>
{
Transform<IFFTReal_Traits> _tr;
public:
Transform() {}
void compute_transform(const vec &in, vec &out) {
int N = in.size();
if(N == 1)
out = in;
else {
cvec c = to_cvec(in);
c.set_size(2 * N, true);
c(0) *= std::sqrt(2.0);
for(int i = 0; i < N; i++) {
c(i) *= std::complex<double>(std::cos(pi * i / N / 2), std::sin(pi * i / N / 2))
* std::sqrt(2.0 * N);
}
for(int i = N - 1; i >= 1; i--) {
c(c.size() - i) = c(i) * std::complex<double>(std::cos(pi * i / N),
std::sin(-pi * i / N));
}
_tr.compute_transform(c, out);
out.set_size(N, true);
}
}
void reset() {_tr.reset();}
};
#endif
#if defined(HAVE_FFT)
//lock-protected transform to serialize accesses to the context from several threads
template<typename TransformTraits> class Locked_Transform : private Transform<TransformTraits>
{
typedef Transform<TransformTraits> Base;
Mutex _m;
public:
Locked_Transform() {}
//release context
void release_context() {Lock l(_m); Base::reset();}
void run_transform(const typename TransformTraits::InType& in, typename TransformTraits::OutType& out) {Lock l(_m); Base::compute_transform(in, out);}
};
//Typical multithreaded application creates several threads upon entry to parallel region and join them upon exit from it.
//Threads used to perform parallel computations can either be terminated upon exit from the parallel region or left in the
//parked state, so in the next parallel region application can reuse already created threads from the team instead of the
//time-consuming creation of new threads. There is no way to control threads creation-destruction with OMP and, therefore
//there is no way to implement automatic clean-up of transform computation contexts for each thread (basically, this means that
//we can not appropriately release FFT library resources and this results in memory leak)
//In order to solve this problem and implement the FFT transforms in multithreded environment library relyes on the statically
//created pool of transform contexts.
//Each thread willing to run the transfrom queries the context index from transfrom provider. Thread uses assigned index and
//corresponding context to compute the transforms during it's lifetime. Provider assigns contexts in round-robbin fashion, so
//context used by the exited threads are reused by newly created ones.
//Single context can be reused by multiple threads if application created more then contexts_per_transform_type threads performing
//some type of transform.
static bool is_library_initialized = false;
template<typename TransformTraits> class Transform_Provider
{
typedef Locked_Transform<TransformTraits> Transform;
Transform _transforms[contexts_per_transform_type];
int _id;
public:
Transform_Provider(): _id(0) {
if(!is_library_initialized) {
//initialize FFT library on first conctruction of any of Transform_Provider objects
init_fft_library<ThreadingTag>();
is_library_initialized = true;
}
}
int get_context_id() {
//assign id in round-robin fashion.
int ret = _id + 1;
if(ret == contexts_per_transform_type)
_id = 0;
else
_id = ret;
return ret;
}
void run_transform(int id, const typename TransformTraits::InType& in, typename TransformTraits::OutType& out) {
_transforms[id - 1].run_transform(in, out);
}
//provider destructor. releases context resources.
//destructor is called after the main() exits, so there is no need to protect context release with mutex
~Transform_Provider() {
for(int i = 0; i < contexts_per_transform_type; ++i)
_transforms[i].release_context();
}
};
//Transform_Provider is constructed upon the first request
template<typename TransformTraits> Transform_Provider<TransformTraits>& get_transform_provider()
{
static Transform_Provider<TransformTraits> p;
return p;
}
void fft(const cvec &in, cvec &out)
{
static int context_id = 0;
#pragma omp threadprivate(context_id)
if(context_id == 0) {
//first-time transform call
#pragma omp critical
{
//serialize access to transform provider to get the id
context_id = get_transform_provider<FFTCplx_Traits>().get_context_id();
}
}
it_assert(in.size() > 0, "fft(): zero-sized input detected");
//there is no need to serialize here, since provider is constructed at this point
get_transform_provider<FFTCplx_Traits>().run_transform(context_id, in, out);
}
void ifft(const cvec &in, cvec &out)
{
static int context_id = 0;
#pragma omp threadprivate(context_id)
if(context_id == 0) {
//first-time transform call
#pragma omp critical
{
//serialize access to transform provider to get the id
context_id = get_transform_provider<IFFTCplx_Traits>().get_context_id();
}
}
it_assert(in.size() > 0, "ifft(): zero-sized input detected");
//there is no need to serialize here, since provider is constructed at this point
get_transform_provider<IFFTCplx_Traits>().run_transform(context_id, in, out);
}
void fft_real(const vec &in, cvec &out)
{
static int context_id = 0;
#pragma omp threadprivate(context_id)
if(context_id == 0) {
//first-time transform call
#pragma omp critical
{
//serialize access to transform provider to get the id
context_id = get_transform_provider<FFTReal_Traits>().get_context_id();
}
}
it_assert(in.size() > 0, "fft_real(): zero-sized input detected");
//there is no need to serialize here, since provider is constructed at this point
get_transform_provider<FFTReal_Traits>().run_transform(context_id, in, out);
}
void ifft_real(const cvec &in, vec &out)
{
static int context_id = 0;
#pragma omp threadprivate(context_id)
if(context_id == 0) {
//first-time transform call
#pragma omp critical
{
//serialize access to transform provider to get the id
context_id = get_transform_provider<IFFTReal_Traits>().get_context_id();
}
}
it_assert(in.size() > 0, "ifft_real(): zero-sized input detected");
//there is no need to serialize here, since provider is constructed at this point
get_transform_provider<IFFTReal_Traits>().run_transform(context_id, in, out);
}
void dct(const vec &in, vec &out)
{
static int context_id = 0;
#pragma omp threadprivate(context_id)
if(context_id == 0) {
//first-time transform call
#pragma omp critical
{
//serialize access to transform provider to get the id
context_id = get_transform_provider<DCT_Traits>().get_context_id();
}
}
it_assert(in.size() > 0, "dct(): zero-sized input detected");
//there is no need to serialize here, since provider is definitely constructed at this point
get_transform_provider<DCT_Traits>().run_transform(context_id, in, out);
}
void idct(const vec &in, vec &out)
{
static int context_id = 0;
#pragma omp threadprivate(context_id)
if(context_id == 0) {
//first-time transform call
#pragma omp critical
{
//serialize access to transform provider to get the id
context_id = get_transform_provider<IDCT_Traits>().get_context_id();
}
}
it_assert(in.size() > 0, "dct(): zero-sized input detected");
//there is no need to serialize here, since provider is definitely constructed at this point
get_transform_provider<IDCT_Traits>().run_transform(context_id, in, out);
}
bool have_fourier_transforms() {return true;}
bool have_cosine_transforms() {return true;}
#else
void fft(const cvec &in, cvec &out)
{
it_error("FFT library is needed to use fft() function");
}
void ifft(const cvec &in, cvec &out)
{
it_error("FFT library is needed to use ifft() function");
}
void fft_real(const vec &in, cvec &out)
{
it_error("FFT library is needed to use fft_real() function");
}
void ifft_real(const cvec &in, vec & out)
{
it_error("FFT library is needed to use ifft_real() function");
}
void dct(const vec &in, vec &out)
{
it_error("FFT library is needed to use dct() function");
}
void idct(const vec &in, vec &out)
{
it_error("FFT library is needed to use idct() function");
}
bool have_fourier_transforms() {return false;}
bool have_cosine_transforms() {return false;}
#endif // defined(HAVE_FFT)
cvec fft(const cvec &in)
{
cvec out;
fft(in, out);
return out;
}
cvec fft(const cvec &in, const int N)
{
cvec in2 = in;
cvec out;
in2.set_size(N, true);
fft(in2, out);
return out;
}
cvec ifft(const cvec &in)
{
cvec out;
ifft(in, out);
return out;
}
cvec ifft(const cvec &in, const int N)
{
cvec in2 = in;
cvec out;
in2.set_size(N, true);
ifft(in2, out);
return out;
}
cvec fft_real(const vec& in)
{
cvec out;
fft_real(in, out);
return out;
}
cvec fft_real(const vec& in, const int N)
{
vec in2 = in;
cvec out;
in2.set_size(N, true);
fft_real(in2, out);
return out;
}
vec ifft_real(const cvec &in)
{
vec out;
ifft_real(in, out);
return out;
}
vec ifft_real(const cvec &in, const int N)
{
cvec in2 = in;
in2.set_size(N, true);
vec out;
ifft_real(in2, out);
return out;
}
vec dct(const vec &in)
{
vec out;
dct(in, out);
return out;
}
vec dct(const vec &in, const int N)
{
vec in2 = in;
vec out;
in2.set_size(N, true);
dct(in2, out);
return out;
}
vec idct(const vec &in)
{
vec out;
idct(in, out);
return out;
}
vec idct(const vec &in, const int N)
{
vec in2 = in;
vec out;
in2.set_size(N, true);
idct(in2, out);
return out;
}
// ----------------------------------------------------------------------
// Instantiation
// ----------------------------------------------------------------------
template ITPP_EXPORT vec dht(const vec &v);
template ITPP_EXPORT cvec dht(const cvec &v);
template ITPP_EXPORT void dht(const vec &vin, vec &vout);
template ITPP_EXPORT void dht(const cvec &vin, cvec &vout);
template ITPP_EXPORT void self_dht(vec &v);
template ITPP_EXPORT void self_dht(cvec &v);
template ITPP_EXPORT vec dwht(const vec &v);
template ITPP_EXPORT cvec dwht(const cvec &v);
template ITPP_EXPORT void dwht(const vec &vin, vec &vout);
template ITPP_EXPORT void dwht(const cvec &vin, cvec &vout);
template ITPP_EXPORT void self_dwht(vec &v);
template ITPP_EXPORT void self_dwht(cvec &v);
template ITPP_EXPORT mat dht2(const mat &m);
template ITPP_EXPORT cmat dht2(const cmat &m);
template ITPP_EXPORT mat dwht2(const mat &m);
template ITPP_EXPORT cmat dwht2(const cmat &m);
} // namespace itpp
//! \endcond
|