File: gmm.h

package info (click to toggle)
libitpp 4.3.1-13
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 9,952 kB
  • sloc: cpp: 73,628; makefile: 661; python: 548; sh: 261
file content (105 lines) | stat: -rw-r--r-- 3,701 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
/*!
 * \file
 * \brief Definition of a Gaussian Mixture Model Class
 * \author Thomas Eriksson
 *
 * -------------------------------------------------------------------------
 *
 * Copyright (C) 1995-2010  (see AUTHORS file for a list of contributors)
 *
 * This file is part of IT++ - a C++ library of mathematical, signal
 * processing, speech processing, and communications classes and functions.
 *
 * IT++ is free software: you can redistribute it and/or modify it under the
 * terms of the GNU General Public License as published by the Free Software
 * Foundation, either version 3 of the License, or (at your option) any
 * later version.
 *
 * IT++ is distributed in the hope that it will be useful, but WITHOUT ANY
 * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along
 * with IT++.  If not, see <http://www.gnu.org/licenses/>.
 *
 * -------------------------------------------------------------------------
 */

#ifndef GMM_H
#define GMM_H

#include <itpp/base/mat.h>
#include <itpp/itexports.h>


namespace itpp
{

/*!
  \ingroup sourcecoding
  \brief Gaussian Mixture Model Class
  \author Thomas Eriksson
 */
class ITPP_EXPORT GMM
{
public:
  GMM();
  GMM(int nomix, int dim);
  GMM(std::string filename);
  void init_from_vq(const vec &codebook, int dim);
  // void init(const vec &w_in, const vec &m_in, const vec &sigma_in);
  void init(const vec &w_in, const mat &m_in, const mat &sigma_in);
  void load(std::string filename);
  void save(std::string filename);
  void set_weight(const vec &weights, bool compflag = true);
  void set_weight(int i, double weight, bool compflag = true);
  void set_mean(const mat &m_in);
  void set_mean(const vec &means, bool compflag = true);
  void set_mean(int i, const vec &means, bool compflag = true);
  void set_covariance(const mat &sigma_in);
  void set_covariance(const vec &covariances, bool compflag = true);
  void set_covariance(int i, const vec &covariances, bool compflag = true);
  int get_no_mixtures();
  int get_no_gaussians() const { return M; }
  int get_dimension();
  vec get_weight();
  double get_weight(int i);
  vec get_mean();
  vec get_mean(int i);
  vec get_covariance();
  vec get_covariance(int i);
  void marginalize(int d_new);
  void join(const GMM &newgmm);
  void clear();
  double likelihood(const vec &x);
  double likelihood_aposteriori(const vec &x, int mixture);
  vec likelihood_aposteriori(const vec &x);
  vec draw_sample();
protected:
  vec   m, sigma, w;
  int   M, d;
private:
  void  compute_internals();
  vec   normweight, normexp;
};

inline void GMM::set_weight(const vec &weights, bool compflag) {w = weights; if (compflag) compute_internals(); }
inline void GMM::set_weight(int i, double weight, bool compflag) {w(i) = weight; if (compflag) compute_internals(); }
inline void GMM::set_mean(const vec &means, bool compflag) {m = means; if (compflag) compute_internals(); }
inline void GMM::set_covariance(const vec &covariances, bool compflag) {sigma = covariances; if (compflag) compute_internals(); }
inline int GMM::get_dimension() {return d;}
inline vec GMM::get_weight() {return w;}
inline double GMM::get_weight(int i) {return w(i);}
inline vec GMM::get_mean() {return m;}
inline vec GMM::get_mean(int i) {return m.mid(i*d, d);}
inline vec GMM::get_covariance() {return sigma;}
inline vec GMM::get_covariance(int i) {return sigma.mid(i*d, d);}

ITPP_EXPORT GMM gmmtrain(Array<vec> &TrainingData, int M, int NOITER = 30, bool VERBOSE = true);

//! \endcond

} // namespace itpp

#endif // #ifndef GMM_H