File: users_guide.doc

package info (click to toggle)
libitpp 4.3.1-14
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 9,952 kB
  • sloc: cpp: 73,628; makefile: 661; python: 548; sh: 261
file content (631 lines) | stat: -rw-r--r-- 15,437 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
/*!
\page users_guide Users Guide

\section toc Table of Contents
- \ref introduction
- \ref predefined_types
  - \ref scalar_types
  - \ref vector_types
  - \ref matrix_types
- \ref using_vectors
  - \ref defining_vectors
  - \ref vector_manipulation
  - \ref vector_converters
  - \ref vector_functions
- \ref using_matrices
  - \ref matrix_converters
- \ref array_class
- \ref random_variables
  - \ref random_vec_mat
  - \ref rng
- \ref deterministic_sources
- \ref filters
- \ref signal_processing
- \ref timer_class
- \ref itfile_class


\section introduction Introduction

The \c itbase library is the core of \c IT++ and it contains classes and
functions for mathematics with scalars, vectors, and matrices. This document
does not cover all the aspects of the \c itbase library. It does however
explain the most important things you need to know in order to start using
IT++. Once you are more familiar with the \c itbase library you will find
the online reference manual more useful.


\section predefined_types Predefined Data Types


\subsection scalar_types Predefined Scalar Types

Apart from the standard C++ types e.g. \c char, \c short, \c int, \c long,
\c double, \c float, and \c long \c long, the following types are specific
for \c IT++:
- \c complex<double>: Contains real and imaginary parts of type \c double
- \c bin: Used for binary (0,1) data


\subsection vector_types Prepared Vector Types

A vector can in principle be of arbitrary type (that support addition,
subtraction, multiplication and division), since the general vector class \c
Vec<TYPE> is templated. However, the most commonly used vector types are
predefined. These predefined vector types are:

- \c vec: Basic vector type containing \c double
- \c cvec: Vector type containing \c complex<double>
- \c ivec: Vector type containing \c int
- \c bvec: Vector type containing \c bin
- \c svec: Vector type containing \c short

The general vector class is used to define the specialized classes above.
The \c vec class is actually a \c Vec<double>. We urge you to use these
predefined classes instead of \c Vec<TYPE> when ever possible.


\subsection matrix_types Prepared Matrix Types

The general matrix class is called \c Mat<TYPE>. These predefined matrix
types are:

- \c mat: Basic matrix type containing double
- \c cmat: Matrix type containing \c complex<double>
- \c imat: Matrix type containing \c int
- \c bmat: Matrix type containing \c bin
- \c smat: Matrix type containing \c short

As with vector, the general matrix class is used to define the specialized
classes above. The \c mat class is thus a \c Mat<double>. We urge you to use
these predefined classes instead of \c Mat<TYPE> whenever possible.


\section using_vectors Using Vectors

Vectors and matrices in \c IT++ are very similar. We therefore begin to
describe the vector class in detail and then briefly explain the differences
regarding matrices in the next section.


\subsection defining_vectors Defining a Vector

A vector containing elements of type \c double is defined with:

\code
vec my_vector;
\endcode

However, this will not assign a size (memory) to the vector. To assign size
10 to the vector we may use:

\code
vec my_vector(10);
\endcode

or

\code
vec my_vector;
my_vector.set_size(10,false);
\endcode

where the second parameter in the \c set_size call (\c true or \c false)
determines if you want to copy the contents of the old data area into the
new resized one, or not. This may be useful when down-sizing a vector, but
in this case it is not. It is also equivalent to use

\code
my_vector.set_length(10,false);
\endcode

instead of \c set_size.

Observe that a declared vector (or matrix) is not cleared (the element
values are undefined). To clear a vector we simply write

\code
my_vector.clear();
\endcode

or

\code
my_vector.zeros();
\endcode

To fill the vector with ones we write

\code
my_vector.ones();
\endcode

It is possible to retrieve the length (size) of a vector in any of the
following ways:

\code
length_of_vector = my_vector.length();
length_of_vector = my_vector.size();
length_of_vector = length(my_vector);
\endcode

To assign values to a vector

\code
vec  a = "0 0.7 5 9.3";        // that is a = [0 0.7 5 9.3]
ivec b = "0:5";                // that is b = [0 1 2 3 4 5]
vec  c = "3:2.5:13";           // that is c = [3 5.5 8 10.5 13]
ivec d = "1:3:5,0:2:4";        // that is d = [1 3 5 0 2 4]
vec e("1.2,3.4,5.6");          // that is e = [1.2 3.4 5.6]
vec f;
f.set("1.0 2.0 3.0 4.0");      // that is f = [1.0 2.0 3.0 4.0]
vec g;
g = f;                         // that is g is a copy of f
\endcode

A comma or a space character separates the vector elements. When assigning
or retrieving a specific vector element use

\code
a(i) = 3.14;
double p = a(i);
\endcode

for element number \a i. Vector elements are numbered such that \a a(0)
denotes the first element. It is also possible to use square brackets as in
the C language, i.e.

\code
a[i] = 3.14;
double p = a[i];
\endcode

Parts or a vector are retrieved by

\code
a.left(3);   // a vector containing the first 3 elements of a
a.right(2);  // a vector containing the last 2 elements of a
a.mid(1,2);  // a vector containing the 2 elements starting with a(1)
a(2,4);      // a vector containing all elements from a(2) to a(4)
a(2,-1);     // a vector containing all elements from a(2) to the end of a
\endcode

Alternatively you can use \a get() methods instead of () or [] operators, e.g.

\code
a.get(4);
a.get(5,-1);
\endcode

If you have a vector called \a index_list containing indexes (\a ivec) you
may write

\code
// these give a vector containing elements with indexes in index_list
a(index_list);
a.get(index_list);
\endcode

If you have a \c bvec called e.g. \a bin_list you may write

\code
// these give a vector containing all elements a(i) for which bin_list(i) equals 1
a(bin_list);
a.get(bin_list);
\endcode

Have a look at the following example:

\code
#include <itpp/itbase.h>
using namespace itpp;
using namespace std;

int main() {
  vec a = linspace(0,1,11);
  ivec index_list = "3 5 2 2";
  bvec bin_list = "1 0 1 0 1 0 1 0 1 0 1";

  cout << "a = " << a << endl;
  cout << "a(index_list) = " << a(index_list) << endl;
  cout << "a.get(bin_list) = " << a.get(bin_list) << endl;
}
\endcode

When you run this program you will see

\code
a = [0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0]
a(index_list) = [0.3 0.5 0.2 0.2]
a.get(bin_list) = [0.0 0.2 0.4 0.6 0.8 1.0]
\endcode


\subsection vector_manipulation Vector Manipulation

Below follows a listing of the most common vector manipulation commands that
are available. All examples are given for an \c ivec denoted \a my_ivec, but
of course this will work for other vector types as well.

- \c shift_right:
\code
// Shift in scalar data (10) at position 0
my_ivec.shift_right(10);

// Shift in vector at position 0
my_ivec.shift_right("10 4");
\endcode

- \c shift_left:
\code
// Shift in scalar data (10) at position Size()-1
my_ivec.shift_left(10);

// Shift in vector at position Size()-1
my_ivec.shift_left("10 4");
\endcode

- \c set_subvector:
\code
// Replace part of vector from position (10) with the vector "11 13"
my_ivec.set_subvector(10,"11 13");
\endcode

- \c del:
\code
// Delete element at index (10), making vector size one less
my_ivec.del(10);
\endcode

- \c ins:
\code
// Insert element at index (10), making vector size one extra
my_ivec.ins(10);
\endcode

- \c split:
\code
// Splits vector at pos (10). Returns first part, keep second part.
ivec first_part = my_ivec.split(10);
\endcode

- \c elem_mult:
\code
// Multiply two vectors element wise.
ivec my_product = elem_mult(my_invec1,my_ivec2);
\endcode

- \c elem_div:
\code
// Dividide two vectors element wise.
ivec my_product = elem_div(my_invec1,my_ivec2);
\endcode

- Calculation: +, -, *, /
\code
a = my_ivec1 + my_ivec2;  // Addition of vectors
a = my_ivec + 10;         // Addition of vector and scalar
a = my_ivec1 - my_ivec2;  // Subtraction of vectors
a = my_ivec - 10;         // Subtraction of vector and scalar
a = my_ivec * 10;         // Multiplication of vector and scalar
a = my_ivec / 10;         // Division of vector and scalar
\endcode

- Calculation: +=, -=, *=, /=, |=
\code
a += my_ivec;  // Addition of vectors (a = a+my_ivec)
my_ivec += 10; // Addition of vector and scalar (10)
a -= my_ivec;  // Subtraction of vectors (a = a-my_ivec)
my_ivec -= 10; // Subtraction of vector and scalar (10)
my_ivec *= 10; // Multiplication of vector and scalar (10)
my_ivec /= 10; // Divsion of vector and scalar (10)
my_ivec |= a;  // Element wise division
\endcode

- \c concat
\code
a = concat(my_ivec1, my_ivec2);  // concatenation of two vectors
\endcode


\subsection vector_converters Vector Converters

In order to convert e.g an \c ivec to a \c vec we can write some thing like
\c my_vec = \c to_vec(my_ivec). The following converters are available:
- \c to_bvec,
- \c to_svec,
- \c to_ivec,
- \c to_vec,
- \c to_cvec.


\subsection vector_functions Vector Functions

There are several functions that operate on vectors. Some examples are:
\c max, \c max_index, \c min, \c min_index, \c product, \c energy,
\c geometric_mean, \c mean, \c median, \c norm, \c round, \c variance,
\c ceil_i, \c floor_i, \c round_i, \c find.

Examples of functions that generate different kinds of vectors are:
\c linspace, \c ones_b, \c ones_c, \c ones_i, \c ones \c zeros_b. There
are several more than these. Please refer to the IT++ reference manual
for a description of these.


\section using_matrices Using Matrices

Matrices are two-dimensional arrays, and most of their functionality is
similar to that of vectors. The predefined matrix types are:

- \c mat,
- \c cmat,
- \c imat,
- \c smat,
- \c bmat.

Below follows some examples that are specific for matrices only:

<ul>
<li> Define a matrix of type \c double with 3 rows and 4 columns
\code
mat a(3,4);
\endcode
</li>

<li> Define a matrix of type \c int with 2 rows and 3 columns. A comma (,)
or space is used to separate columns and a semicolon (;) is used to separate
rows.
\code
imat a = "1 2 3;4 5 6";
\endcode
</li>

<li> Access to rows and columns with \c get_row and \c get_col
\code
a.get_row(1); // Returns the second row of the matrix b
a.get_col(0); // Returns the first column of the matrix b
\endcode
</li>

<li> Set rows and columns with \c set_row and \c set_col
\code
a.set_row(1,"9 8 7"); // Set second row to "9 8 7"
a.set_col(0,"7 2");   // Set first column to "7 2"
\endcode
</li>

<li> The size of a matrix
\code
// Set the size. "false" means "do not copy"
a.set_size(4,5,false);
int nr_of_rows = a.rows();    // return the number of rows
int nr_of_columns = a.cols(); // return the number of columns
\endcode
</li>

<li> Access to parts of a matrix
\code
a(r,c); // Access to a single element.
a(i);   // Access to a single element. Linear addressing, by rows.

// Returns the sub-matrix from rows r1 to r2 and columns c1 to c2.
a(r1,r2,c1,c2);
\endcode
</li>

<li> Copy rows and columns
\code
// Copy row number "from" to row number "to"
a.copy_row(to,from)

// Copy column number "from" to column number "to"
a.copy_col(to,from)
\endcode
</li>

<li> Swap rows and columns
\code
// Swap rows number r1 and r2
a.swap_rows(r1,r2)

// Swap columns number c1 and c2
a.swap_cols(c1,c2)
\endcode
</li>

<li> Horizontal and vertical concatenation
\code
// Equivalent to the MATLAB command c = [a b]
c = concat_horizontal(a,b);

// Equivalent to the MATLAB command c = [a;b]
c = concat_vertical(a,b);
\endcode
</li>
</ul>


\subsection matrix_converters Matrix Converters

The following converters are available:

- \c to_mat,
- \c to_imat,
- \c to_cmat,
- \c to_bmat.


\section array_class The Array Class

The \c itbase library contains, among other things, the \c Array class. An
\c Array can contain any type of data. Below is an example of an \c Array
containing vectors (\c vec):

\code
#include <itpp/itbase.h>

using namespace itpp;
using namespace std;

int main() {
  Array<vec> my_vec_array(2);
  my_vec_array(0) = linspace(0,1,4);
  my_vec_array(1) = "0.1 0.2 0.3 0.4 0.3 0.2 0.1";
  cout << "my_vec_array = " << my_vec_array << endl;

  return 0;
}
\endcode


\section random_variables Random Vectors, Matrices, and Generators


\subsection random_vec_mat Random Vectors and Matrices

Random vectors and matrices are easily obtained by using these predefined
functions:

- \c randb: Generates a random bit vector or matrix
- \c randu: Generates a random uniform vector or matrix
- \c randi: Generates a random index vector or matrix
- \c randray: Generates a random Rayleigh vector or matrix
- \c randrice: Generates a random Rice vector or matrix
- \c randexp: Generates a random Exponential vector or matrix
- \c randn: Generates a random Gaussian vector or matrix
- \c randn_c: Generates a random complex Gaussian vector or matrix


\subsection rng Random Number Generators (RNG)

The following discrete valued random number generators are available. More
information about these can be found in the IT++ reference manual.

- \c Bernoulli_RNG
- \c I_Uniform_RNG

The following continuous valued random number generators are available.

- \c Uniform_RNG
- \c Exponential_RNG
- \c Normal_RNG
- \c Complex_Normal_RNG
- \c AR1_Normal_RNG
- \c Weibull_RNG
- \c Rayleigh_RNG
- \c Rice_RNG


\section deterministic_sources Deterministic Sources

The following deterministic sources are available:

- \c Sine_Source
- \c Square_Source
- \c Triangle_Source
- \c Sawtooth_Source
- \c Impulse_Source
- \c Pattern_Source


\section filters Filter Classes and Functions

The following filter classes are available:

- \c AR_Filter
- \c MA_Filter
- \c ARMA_Filter
- \c Freq_Filt

The following filter functions are available:

- \c filter


\subsection signal_processing Signal Processing Functions

The following signal processing functions are available:

- \c a2k, \c k2a, \c a2lar, \c k2lar, \c lpc, \c levinsson, \c lerouxguegen
- \c fft, \c ifft, \c fft_real, \c ifft_real
- \c dct, \c idct
- \c spectrum
- \c cov, \c xcorr
- \c chirp
- \c dht, \c dht2, \c dwht, \c dhwt2, \c self_dht, \c self_dwht
- \c filter_spectrum
- \c filter_whiteness


\section timer_class Timer Classes

The \c Real_Timer class can be used to measure execution time of a program
as in the following example:

\code
#include <itpp/itbase.h>

using namespace itpp;
using namespace std;

int main() {
  long sum = 0;
  Real_Timer my_timer;

  my_timer.tic();
  for (int i=0; i<10000000; i++) {
    sum += i;
  }
  my_timer.toc_print();

  cout << "The sum is " << sum << endl;

  return 0;
}
\endcode


\section itfile_class Reading and Writing to Files

The following example saves the variable \a a to the file
\c my_file_name.it:

\code
#include <itpp/itbase.h>

using namespace itpp;

int main() {
  it_file my_file("my_file_name.it");
  vec a = "1.0 2.0 3.0 4.0";
  my_file << Name("a") << a;

  return 0;
}
\endcode

The following example reads the variable \a a from the file
\c my_file_name.it and prints it:
\code
#include <itpp/itbase.h>

using namespace itpp;
using namespace std;

int main() {
  it_file my_file("my_file_name.it");
  vec a;
  my_file >> Name("a") >> a;
  cout << "a = " << a << endl;

  return 0;
}
\endcode

Note that <tt>*.it</tt> files can be read and written in Matlab/Octave by
using the \c itload.m and \c itsave.m functions.

Also available is the class \c it_ifile that can only be used for reading of
files.

*/