File: fix_test.cpp

package info (click to toggle)
libitpp 4.3.1-14
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 9,952 kB
  • sloc: cpp: 73,628; makefile: 661; python: 548; sh: 261
file content (164 lines) | stat: -rw-r--r-- 5,958 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
/*!
 * \file
 * \brief Fixed-point classes test program
 * \author Johan Bergman and Adam Piatyszek
 *
 * -------------------------------------------------------------------------
 *
 * Copyright (C) 1995-2013  (see AUTHORS file for a list of contributors)
 *
 * This file is part of IT++ - a C++ library of mathematical, signal
 * processing, speech processing, and communications classes and functions.
 *
 * IT++ is free software: you can redistribute it and/or modify it under the
 * terms of the GNU General Public License as published by the Free Software
 * Foundation, either version 3 of the License, or (at your option) any
 * later version.
 *
 * IT++ is distributed in the hope that it will be useful, but WITHOUT ANY
 * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along
 * with IT++.  If not, see <http://www.gnu.org/licenses/>.
 *
 * -------------------------------------------------------------------------
 */

#include <itpp/itfixed.h>
#include <iomanip>
#include "gtest/gtest.h"

using namespace itpp;
using namespace std;

TEST (Fix, All)
{
  // This is a hack for improper rounding under MinGW
  static const double eps = 1e-4;

  // Testing declaration, initialization and conversion
  int shift(10);       // -64...+63 (0 is default)
  int wordlen(20);     // 1...64 (64 is default)
  e_mode emode(TC);    // TC or US (TC is default)
  o_mode omode(WRAP);  // WRAP or SAT (WRAP is default)
  q_mode qmode(TRN);   // RND or TRN (TRN is default)
  Stat *stat_ptr(0);   // 0 or Stat* value (0 is default)

  // For double and complex<double>
  double real_value(3.14159265358979323846);
  complex<double> complex_value(100.0 / 3.0, 200.0 / 3.0);

  // For Fix and CFix
  Fix the_fix(real_value, shift, wordlen, emode, omode, qmode, stat_ptr);
  ASSERT_NEAR(3.14062, double(the_fix), eps);
  CFix the_cfix(complex_value, 0.0, shift, wordlen, emode, omode, qmode,
  stat_ptr);
  complex<double> actual = complex<double>(the_cfix);
  ASSERT_NEAR(33.333, actual.real(), eps);
  ASSERT_NEAR(66.666, actual.imag(), eps);

  // For Fixed and CFixed
  Fixed<20, TC, WRAP, TRN> the_fixed(real_value, shift, stat_ptr);
  ASSERT_NEAR(3.14062, double(the_fixed), eps);
  CFixed<20, TC, WRAP, TRN> the_cfixed(complex_value, 0.0, shift, stat_ptr);
  actual = complex<double>(the_cfixed);
  ASSERT_NEAR(33.333, actual.real(), eps);
  ASSERT_NEAR(66.666, actual.imag(), eps);

  // For Fixed and CFixed declared using a typedef
  fixed20 the_fixed20(real_value, shift, stat_ptr);
  ASSERT_NEAR(3.14062, double(the_fixed20), eps);
  cfixed20 the_cfixed20(complex_value, 0.0, shift, stat_ptr);
  actual = complex<double>(the_cfixed20);
  ASSERT_NEAR(33.333, actual.real(), eps);
  ASSERT_NEAR(66.666, actual.imag(), eps);

  // For Fix and CFix declared using a factory
  Fix the_fix20(FIX20);
  the_fix20.set(real_value, shift);
  ASSERT_NEAR(3.14062, double(the_fix20), eps);
  CFix the_cfix20(FIX20);
  the_cfix20.set(complex_value, shift);
  actual = complex<double>(the_cfix20);
  ASSERT_NEAR(33.333, actual.real(), eps);
  ASSERT_NEAR(66.666, actual.imag(), eps);

  // Testing Array/Vec/Mat declarations and operations
  int vec_length(2);

  // For Vec<Fix> and Vec<CFix>
  fixvec the_fixvec(vec_length, FIX20);
  the_fixvec = Fix(real_value, shift);
  vec v_actual = to_vec(the_fixvec);
  vec v_expect = "3.14062 3.14062";
  int i;
  for (i = 0; i < v_actual.length(); ++i) {
    ASSERT_NEAR(v_actual[i], v_expect[i], eps);
  }

  cfixvec the_cfixvec(vec_length, FIX20);
  the_cfixvec = CFix(complex_value, 0.0, shift);
  cvec cv_actual = to_cvec(the_cfixvec);
  cvec cv_expect = "33.333+66.666i 33.333+66.666i";
  for (i = 0; i < cv_actual.length(); ++i) {
    ASSERT_NEAR(cv_actual[i].real(), cv_expect[i].real(), eps);
    ASSERT_NEAR(cv_actual[i].imag(), cv_expect[i].imag(), eps);
  }
  cv_actual = to_cvec(the_cfixvec + the_fixvec);
  cv_expect = "36.4736+66.666i 36.4736+66.666i";
  for (i = 0; i < cv_actual.length(); ++i) {
    ASSERT_NEAR(cv_actual[i].real(), cv_expect[i].real(), eps);
    ASSERT_NEAR(cv_actual[i].imag(), cv_expect[i].imag(), eps);
  }
  cv_actual = to_cvec(the_cfixvec - the_fixvec);
  cv_expect = "30.1924+66.666i 30.1924+66.666i";
  for (i = 0; i < cv_actual.length(); ++i) {
    ASSERT_NEAR(cv_actual[i].real(), cv_expect[i].real(), eps);
    ASSERT_NEAR(cv_actual[i].imag(), cv_expect[i].imag(), eps);
  }
  actual = complex<double>(the_cfixvec * the_fixvec);
  cv_expect = "209.373+418.746i";
  ASSERT_NEAR(209.373, actual.real(), eps);
  ASSERT_NEAR(418.746, actual.imag(), eps);
  cv_actual = to_cvec(the_cfixvec / the_fix);
  cv_expect = "10+21i 10+21i";
  for (i = 0; i < cv_actual.length(); ++i) {
    ASSERT_NEAR(cv_actual[i].real(), cv_expect[i].real(), eps);
    ASSERT_NEAR(cv_actual[i].imag(), cv_expect[i].imag(), eps);
  }

  // Testing functions

  // Function is_fix
  Array<Array<fixvec> > the_array2d_fixvec;
  ASSERT_TRUE(is_fix(the_array2d_fixvec));

  // Function set_fix
  vec original_float = "0:7";
  fixvec resulting_fix(FIX3);
  set_fix(resulting_fix, original_float, 0);
  v_actual = to_vec(resulting_fix);
  v_expect = "0 1 2 3 -4 -3 -2 -1";
  for (i = 0; i < v_actual.length(); ++i) {
    ASSERT_NEAR(v_actual[i], v_expect[i], eps);
  }
  vec resulting_float(FIX3);
  set_fix(resulting_float, original_float, 0);
  for (i = 0; i < resulting_float.length(); ++i) {
    ASSERT_NEAR(resulting_float[i], original_float[i], eps);
  }

  // Function lshift_fix
  Fix fix_to_be_lshifted(FIX16);
  fix_to_be_lshifted = 77;
  lshift_fix(fix_to_be_lshifted, 1);
  ASSERT_NEAR(77, double(fix_to_be_lshifted), eps);

  // Function rshift_fix
  Fix fix_to_be_rshifted(FIX16);
  fix_to_be_rshifted = Fix(3.14, 8);
  rshift_fix(fix_to_be_rshifted, 6, RND);
  ASSERT_NEAR(3.25, double(fix_to_be_rshifted), eps);
}