1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
|
/*!
* \file
* \brief Unit tests for multilateration class
* \author Bogdan Cristea
*
* -------------------------------------------------------------------------
*
* Copyright (C) 1995-2013 (see AUTHORS file for a list of contributors)
*
* This file is part of IT++ - a C++ library of mathematical, signal
* processing, speech processing, and communications classes and functions.
*
* IT++ is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* IT++ is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along
* with IT++. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include <itpp/itcomm.h>
#include "gtest/gtest.h"
using namespace itpp;
using namespace std;
#ifdef _MSC_VER
#include <float.h>
#define isnan _isnan
#endif
#define BASE_LINE_M 10.0
#define SPHERE_RADIUS_M 450
//uncomment the line below in order to run full tests
//this is needed in order to make sure that the tests pass on non-i386 architectures
//#define FULL_TESTS
static
bool point_eq(const vec &expect, const vec &actual, double eps)
{
if((3 != length(expect)) || (3 != length(actual))) {
it_warning("invalid input");
return false;
}
bool out = ((fabs(expect(0) - actual(0)) < eps) && (fabs(expect(1) - actual(1)) < eps) && (fabs(expect(2) - actual(2)) < eps)
&& !isnan(actual(0)) && !isnan(actual(1)) && !isnan(actual(2)));
if(false == out) {
cout << "expect " << expect << endl;
cout << "actual " << actual << endl;
}
return out;
}
static
double get_dist(const vec &p0, const vec &p1)
{
double out = 0.0;
for(int n = 0; n < 3; ++n) {
out += (p1[n] - p0[n]) * (p1[n] - p0[n]);
}
return sqrt(out);
}
//used for both spheric and hybrid multilateration
static
bool generate_meas(vec &meas, const bvec &method, const mat &bs_pos, const vec &ms_pos)
{
unsigned int method_len = length(method);
unsigned int nb_bs = bs_pos.cols();
bool column = true;
if(3 == nb_bs) {
nb_bs = bs_pos.rows();
column = false;
}
if((nb_bs < method_len) || (3 != length(ms_pos))) {
return false;
}
meas.set_size(method_len);
vec pos(3);
vec pos_ref(3);
pos_ref = column ? bs_pos.get_col(0) : bs_pos.get_row(0);
for(unsigned int k = 0; k < method_len; ++k) {
if(bin(1) == method[k]) { /* hyperbolic */
pos = column ? bs_pos.get_col(k + 1) : bs_pos.get_row(k + 1);
meas[k] = get_dist(pos, ms_pos) - get_dist(pos_ref, ms_pos);
}
else { /* spherical */
pos = column ? bs_pos.get_col(k) : bs_pos.get_row(k);
meas[k] = get_dist(pos, ms_pos);
}
}
return true;
}
//used only for hyperbolic multilateration
static
bool generate_meas(mat &meas, const bvec &method, const mat &bs_pos, const vec &ms_pos)
{
unsigned int k;
unsigned int i;
unsigned int method_len = length(method);
unsigned int nb_bs = bs_pos.cols();
bool column = true;
if(3 == nb_bs) {
nb_bs = bs_pos.rows();
column = false;
}
if((nb_bs < method_len) || (3 != length(ms_pos))) {
return false;
}
meas.set_size(nb_bs, nb_bs);
vec pos_i(3);
vec pos_k(3);
for(k = 0; k < nb_bs; ++k) {
pos_k = column ? bs_pos.get_col(k) : bs_pos.get_row(k);
for(i = 0; i < nb_bs; ++i) {
pos_i = column ? bs_pos.get_col(i) : bs_pos.get_row(i);
meas(i, k) = get_dist(pos_i, ms_pos) - get_dist(pos_k, ms_pos);
}
}
return true;
}
static
bool get_bs(mat &bs_pos, unsigned int nb_bs, double l)
{
int n, i, j, k;
static const double SQRT2M1 = 0.7071067811865475;
if(8 < nb_bs) {
it_warning("at most 8 BSs");
return false;
}
n = 0;
i = j = k = 0;
bs_pos.set_size(3, nb_bs);
while((unsigned int)n < nb_bs) {
bs_pos(0, n) = (0.5 - i) * l;
bs_pos(1, n) = (0.5 - j) * l;
bs_pos(2, n++) = (1 - 2 * k) * l * SQRT2M1;
switch(n) { /*ensure that the first 4 BSs are not on the same plane*/
case 3:
i = j = 0;
k = 1;
break;
case 5:
i = k = 1;
j = 0;
break;
case 4:
k = 0;
i = j = 1;
break;
default:
i = (i + 1) % 2;
if((0 != n) && (0 == n % 2)) {
j = (j + 1) % 2;
}
}
}
return true;
}
static
vec get_ms(double radius)
{
static const double SQRT3M1 = 0.5773502691896258;
vec out;
out.set_size(3);
for(int n = 0; n < 3; ++n) {
out[n] = SQRT3M1 * radius * (2.0 * randu() - 1.0);
}
return out;
}
TEST(Multilateration, get_pos)
{
RNG_reset(0);
const unsigned int nb_points = 10;
const double eps = 1e-3;
mat bs_pos;
unsigned int method_len = 0;//NB: the number of BSs is greater by one for hyprid and hyperbolic
bvec method;
vec ms_pos;
vec actual_ms_pos;
unsigned int i;
Multilateration multi;
vec meas;//measurements vector for spherical and hybrid multilateration
mat meas_hyper;//measurements matrix for hyperbolic multilateration
//test inputs
bs_pos.set_size(3, 4);
method.set_size(4);
method.zeros();
multi.setup(method, bs_pos);
ASSERT_TRUE(Multilateration::MULTI_SPHERICAL == multi.get_type());
method(0) = 1;
bs_pos.set_size(3, 5);//nb of BSs is the number of measures plus one
multi.setup(method, bs_pos);
ASSERT_TRUE(Multilateration::MULTI_HYBRID == multi.get_type());
method.ones();
multi.setup(method, bs_pos);
ASSERT_TRUE(Multilateration::MULTI_HYPERBOLIC == multi.get_type());
for(method_len = 4; method_len < 8; ++method_len) {
//spherical multilateration
ASSERT_TRUE(get_bs(bs_pos, method_len, BASE_LINE_M));
method.set_size(method_len);
method.zeros();
multi.setup(method, bs_pos);
ms_pos = get_ms(SPHERE_RADIUS_M);
ASSERT_TRUE(generate_meas(meas, method, bs_pos, ms_pos));
ASSERT_TRUE(multi.get_pos(actual_ms_pos, meas));
ASSERT_TRUE(point_eq(ms_pos, actual_ms_pos, eps));
actual_ms_pos.zeros();
//hybrid multilateration
ASSERT_TRUE(get_bs(bs_pos, method_len + 1, BASE_LINE_M));
for(i = 0; i < (method_len - 1); ++i) {
method[i] = 1;
multi.setup(method, bs_pos);
ms_pos = get_ms(SPHERE_RADIUS_M);
ASSERT_TRUE(generate_meas(meas, method, bs_pos, ms_pos));
ASSERT_TRUE(multi.get_pos(actual_ms_pos, meas));
ASSERT_TRUE(point_eq(ms_pos, actual_ms_pos, eps));
actual_ms_pos.zeros();
}
//hyperbolic multilateration
method[i] = 1;
multi.setup(method, bs_pos);
ms_pos = get_ms(SPHERE_RADIUS_M);
ASSERT_TRUE(generate_meas(meas_hyper, method, bs_pos, ms_pos));
ASSERT_TRUE(multi.get_pos(actual_ms_pos, meas_hyper));
ASSERT_TRUE(point_eq(ms_pos, actual_ms_pos, eps));
actual_ms_pos.zeros();
}
#ifdef FULL_TESTS
//test case when the last measure is always from TDOA
for(method_len = 5; method_len < 8; ++method_len) {
ASSERT_TRUE(get_bs(bs_pos, method_len + 1, BASE_LINE_M));
method.set_size(method_len);
method.ones();
for(i = 0; i < (method_len - 1); ++i) {
method[i] = 0;
multi.setup(method, bs_pos);
ms_pos = get_ms(SPHERE_RADIUS_M);
EXPECT_TRUE(generate_meas(meas, method, bs_pos, ms_pos));
EXPECT_TRUE(multi.get_pos(actual_ms_pos, meas));
EXPECT_TRUE(point_eq(ms_pos, actual_ms_pos, eps));
actual_ms_pos.zeros();
}
}
#endif
}
TEST(Multilateration, get_crlb)
{
vec ms_pos(3);
mat bs_pos;
bvec method;
unsigned int method_len = 4;
double sigma2 = 0.0;
Multilateration multi;
unsigned int i;
method.set_size(method_len);
method.zeros();
ASSERT_TRUE(get_bs(bs_pos, method_len, BASE_LINE_M));
multi.setup(method, bs_pos);
ms_pos = get_ms(SPHERE_RADIUS_M);
double crlb = multi.get_crlb(ms_pos, sigma2);
ASSERT_EQ(0.0, crlb);
sigma2 = 1e-6;
for(method_len = 4; method_len < 8; ++method_len) {
ASSERT_TRUE(get_bs(bs_pos, method_len + 1, BASE_LINE_M));
method.set_size(method_len);
method.zeros();
for(i = 0; i < method_len; ++i) {
method(i) = 1;
multi.setup(method, bs_pos);
ms_pos = get_ms(SPHERE_RADIUS_M);
crlb = multi.get_crlb(ms_pos, sigma2);
ASSERT_NEAR(0.0, crlb, (i < 3) ? 1e-1 : 12);
}
}
ms_pos.ones();
sigma2 = 0.1;
for(method_len = 4; method_len < 8; ++method_len) {
ASSERT_TRUE(get_bs(bs_pos, method_len, BASE_LINE_M));
method.set_size(method_len);
method.zeros();
multi.setup(method, bs_pos);
crlb = multi.get_crlb(ms_pos, sigma2);
ASSERT_NEAR(0.5, crlb, 0.2);
ASSERT_TRUE(get_bs(bs_pos, method_len + 1, BASE_LINE_M));
for(i = 0; i < method_len; ++i) {
method(i) = 1;
multi.setup(method, bs_pos);
crlb = multi.get_crlb(ms_pos, sigma2);
ASSERT_NEAR(0.5, crlb, 0.6);
}
}
}
|