1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
|
/*!
* \file
* \brief Newton search test program
* \author Tony Ottosson
*
* -------------------------------------------------------------------------
*
* Copyright (C) 1995-2013 (see AUTHORS file for a list of contributors)
*
* This file is part of IT++ - a C++ library of mathematical, signal
* processing, speech processing, and communications classes and functions.
*
* IT++ is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* IT++ is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along
* with IT++. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include <itpp/itoptim.h>
#include "gtest/gtest.h"
using namespace itpp;
double rosenbrock(const vec &x)
{
double f1 = x(1) - sqr(x(0)), f2 = 1 - x(0);
double F = 50 * sqr(f1) + 0.5 * sqr(f2) + 0.0;
return F;
}
vec rosenbrock_gradient(const vec &x)
{
double f1 = x(1) - sqr(x(0)), f2 = 1 - x(0);
vec g(2);
g(0) = -200.0 * x(0) * f1 - f2;
g(1) = 100.0 * f1;
return g;
}
static const double tol = 1e-4;
static
void assert_vec_p(const vec &ref, const vec &act, int line)
{
ASSERT_EQ(ref.length(), act.length()) << line;
for (int n = 0; n < ref.length(); ++n) {
ASSERT_NEAR(ref(n), act(n), tol) << line;
}
}
#define assert_vec(ref, act) assert_vec_p(ref, act, __LINE__)
TEST(NewtonSearch, All)
{
// Test of Numerical optimization
{
// Line_Search
vec x0 = "-1.2 1";
double F0 = rosenbrock(x0);
vec g0 = rosenbrock_gradient(x0);
vec h = -g0;
Line_Search line;
line.set_functions(rosenbrock, rosenbrock_gradient);
ASSERT_NEAR(12.1, F0, tol);
vec ref = "-107.8 -44";
assert_vec(ref, g0);
ref = "107.8 44";
assert_vec(ref, h);
double Fn;
vec xn, gn;
line.enable_trace();
ASSERT_TRUE(line.search(x0, F0, g0, h, xn, Fn, gn));
// Soft
ref = "-0.876168 1.13218";
assert_vec(ref, xn);
ASSERT_NEAR(8.40327, Fn, tol);
ref = "61.9977 36.4507";
assert_vec(ref, gn);
ASSERT_EQ(4, line.get_no_function_evaluations());
vec alpha_values, F_values, dF_values;
line.get_trace(alpha_values, F_values, dF_values);
// trace
ref = "0 1 0.1 0.01 0.00300401";
assert_vec(ref, alpha_values);
ref = "12.1 6405495599.3599997 373080.93204800034 102.17722267280001 8.40327";
assert_vec(ref, F_values);
ref = "-13556.84 25963610893.439999 17461465.02672001 9898.07 8287.1771139224893";
assert_vec(ref, dF_values);
line.set_method(Exact);
ASSERT_TRUE(line.search(x0, F0, g0, h, xn, Fn, gn));
// Exact
ref = "-1.03008 1.06935";
assert_vec(ref, xn);
ASSERT_NEAR(2.06405, Fn, tol);
ref = "-0.322427 0.828893";
assert_vec(ref, gn);
ASSERT_EQ(7, line.get_no_function_evaluations());
line.get_trace(alpha_values, F_values, dF_values);
// trace
ref = "0 1 0.1 0.01 0.00300401 0.00165196 0.00148676 0.00157625";
assert_vec(ref, alpha_values);
ref = "12.1 6405495599.3599997 373080.93204800034 102.17722267280001 8.40327 2.08432 2.09243 2.06405";
assert_vec(ref, F_values);
ref = "-13556.84 25963610893.439999 17461465.02672001 9898.07 8287.1771139224893 531.883 -638.60641049642675 1.71365";
assert_vec(ref, dF_values);
}
{
// Newton_Search
vec x0 = "-1.2 1";
Newton_Search newton;
newton.set_functions(rosenbrock, rosenbrock_gradient);
newton.enable_trace();
vec xn, gn;
ASSERT_TRUE(newton.search(x0, xn));
vec ref = "1 1";
assert_vec(ref, xn);
ASSERT_NEAR(5.24508e-14, newton.get_function_value(), tol);
ASSERT_NEAR(1.41687e-06, newton.get_stop_1(), tol);
ASSERT_NEAR(9.32294e-06, newton.get_stop_2(), tol);
ASSERT_EQ(38, newton.get_no_function_evaluations());
ASSERT_EQ(34, newton.get_no_iterations());
Array<vec> xv;
vec Fv, ngv, dv;
newton.get_trace(xv, Fv, ngv, dv);
// trace
ref = "-0.916319 1.11579";
assert_vec(ref, xv(0));
ref = "1 1";
assert_vec(ref, xv(xv.length()-1));
ref = "5.64904 1.5618 1.41629 1.2203 1.20012 1.18688 1.16266 1.11426 1.03385 0.841214 0.682837 0.634992 "
"0.528517 0.395891 0.349639 0.224737 0.202608 0.149765 0.109608 0.0815102 0.0465651 0.0379422 0.0229203 "
"0.0131056 0.00545953 0.0026574 0.000729924 0.000189087 2.7111e-05 4.66978e-06 5.98346e-07 4.12168e-08 "
"2.55577e-11 5.24508e-14";
assert_vec(ref, Fv);
ref = "48.6917 6.83035 9.16562 1.45963 2.87505 3.70968 4.45032 5.01409 4.59566 3.08462 1.58691 2.36257 "
"3.0891 1.40777 3.52707 0.767488 3.04116 0.907026 1.22519 1.64112 0.351909 2.13814 0.643864 1.16604 "
"0.458514 0.87564 0.575896 0.384089 0.0473799 0.0132776 0.0183764 0.00561985 0.000112443 1.41687e-06";
assert_vec(ref, ngv);
ref = "0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.1225 0.1225 0.1225 0.1225 0.1225 0.1225 "
"0.1225 0.1225 0.1225 0.1225 0.1225 0.1225 0.1225 0.1225 0.1225 0.1225 0.1225 0.1225 0.1225 0.1225 0.1225 "
"0.1225 0.1225";
assert_vec(ref, dv);
newton.disable_trace();
// fminunc
xn = fminunc(rosenbrock, rosenbrock_gradient, x0);
ref = "-1.2 1";
assert_vec(ref, x0);
ref = "1 1";
assert_vec(ref, xn);
}
}
|