File: chbevl.cpp

package info (click to toggle)
libitpp 4.3.1-14
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 9,952 kB
  • sloc: cpp: 73,628; makefile: 661; python: 548; sh: 261
file content (101 lines) | stat: -rw-r--r-- 2,741 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
/*!
 * \file
 * \brief Implementation of Chebyshev series evaluation function
 * \author Tony Ottosson
 *
 * -------------------------------------------------------------------------
 *
 * Copyright (C) 1995-2010  (see AUTHORS file for a list of contributors)
 *
 * This file is part of IT++ - a C++ library of mathematical, signal
 * processing, speech processing, and communications classes and functions.
 *
 * IT++ is free software: you can redistribute it and/or modify it under the
 * terms of the GNU General Public License as published by the Free Software
 * Foundation, either version 3 of the License, or (at your option) any
 * later version.
 *
 * IT++ is distributed in the hope that it will be useful, but WITHOUT ANY
 * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along
 * with IT++.  If not, see <http://www.gnu.org/licenses/>.
 *
 * -------------------------------------------------------------------------
 *
 * This is slightly modified routine from the Cephes library:
 * http://www.netlib.org/cephes/
 */

#include <itpp/base/bessel/bessel_internal.h>


/*
 * Evaluate Chebyshev series
 *
 * int N;
 * double x, y, coef[N], chebevl();
 *
 * y = chbevl( x, coef, N );
 *
 * DESCRIPTION:
 *
 * Evaluates the series
 *
 *        N-1
 *         - '
 *  y  =   >   coef[i] T (x/2)
 *         -            i
 *        i=0
 *
 * of Chebyshev polynomials Ti at argument x/2.
 *
 * Coefficients are stored in reverse order, i.e. the zero
 * order term is last in the array.  Note N is the number of
 * coefficients, not the order.
 *
 * If coefficients are for the interval a to b, x must
 * have been transformed to x -> 2(2x - b - a)/(b-a) before
 * entering the routine.  This maps x from (a, b) to (-1, 1),
 * over which the Chebyshev polynomials are defined.
 *
 * If the coefficients are for the inverted interval, in
 * which (a, b) is mapped to (1/b, 1/a), the transformation
 * required is x -> 2(2ab/x - b - a)/(b-a).  If b is infinity,
 * this becomes x -> 4a/x - 1.
 *
 * SPEED:
 *
 * Taking advantage of the recurrence properties of the
 * Chebyshev polynomials, the routine requires one more
 * addition per loop than evaluating a nested polynomial of
 * the same degree.
 */

/*
  Cephes Math Library Release 2.0:  April, 1987
  Copyright 1985, 1987 by Stephen L. Moshier
*/


double chbevl(double x, double array[], int n)
{
  double b0, b1, b2, *p;
  int i;

  p = array;
  b0 = *p++;
  b1 = 0.0;
  i = n - 1;

  do {
    b2 = b1;
    b1 = b0;
    b0 = x * b1  -  b2  + *p++;
  }
  while (--i);

  return(0.5*(b0 - b2));
}