1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
|
/*!
* \file
* \brief Implementation of modified Bessel functions of noninteager order
* \author Tony Ottosson
*
* -------------------------------------------------------------------------
*
* Copyright (C) 1995-2010 (see AUTHORS file for a list of contributors)
*
* This file is part of IT++ - a C++ library of mathematical, signal
* processing, speech processing, and communications classes and functions.
*
* IT++ is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* IT++ is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along
* with IT++. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*
* This is slightly modified routine from the Cephes library:
* http://www.netlib.org/cephes/
*/
#include <itpp/base/bessel/bessel_internal.h>
#include <itpp/base/itassert.h>
/*
* Modified Bessel function of noninteger order
*
* double v, x, y, iv();
*
* y = iv( v, x );
*
* DESCRIPTION:
*
* Returns modified Bessel function of order v of the
* argument. If x is negative, v must be integer valued.
*
* The function is defined as Iv(x) = Jv( ix ). It is
* here computed in terms of the confluent hypergeometric
* function, according to the formula
*
* v -x
* Iv(x) = (x/2) e hyperg( v+0.5, 2v+1, 2x ) / gamma(v+1)
*
* If v is a negative integer, then v is replaced by -v.
*
*
* ACCURACY:
*
* Tested at random points (v, x), with v between 0 and
* 30, x between 0 and 28.
* Relative error:
* arithmetic domain # trials peak rms
* IEEE 0,30 10000 1.7e-14 2.7e-15
*
* Accuracy is diminished if v is near a negative integer.
*
* See also hyperg.c.
*/
/* Mdified Bessel function of noninteger order */
/* If x < 0, then v must be an integer. */
/*
Cephes Math Library Release 2.8: June, 2000
Copyright 1984, 1987, 1988, 2000 by Stephen L. Moshier
*/
#define MAXNUM 1.79769313486231570815E308 /* 2**1024*(1-MACHEP) */
double iv(double v, double x)
{
int sign;
double t, ax;
/* If v is a negative integer, invoke symmetry */
t = floor(v);
if (v < 0.0) {
if (t == v) {
v = -v; /* symmetry */
t = -t;
}
}
/* If x is negative, require v to be an integer */
sign = 1;
if (x < 0.0) {
if (t != v) {
it_warning("iv(): argument domain error");
return(0.0);
}
if (v != 2.0 * floor(v / 2.0))
sign = -1;
}
/* Avoid logarithm singularity */
if (x == 0.0) {
if (v == 0.0)
return(1.0);
if (v < 0.0) {
it_warning("iv(): overflow range error");
return(MAXNUM);
}
else
return(0.0);
}
ax = fabs(x);
t = v * log(0.5 * ax) - x;
t = sign * exp(t) / gam(v + 1.0);
ax = v + 0.5;
return(t * hyperg(ax, 2.0 * ax, 2.0 * x));
}
|