1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
|
/*!
* \file
* \brief Implementation of a BCH encoder/decoder class
* \author Pal Frenger, Steve Peters, Adam Piatyszek and Stephan Ludwig
*
* -------------------------------------------------------------------------
*
* Copyright (C) 1995-2012 (see AUTHORS file for a list of contributors)
*
* This file is part of IT++ - a C++ library of mathematical, signal
* processing, speech processing, and communications classes and functions.
*
* IT++ is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* IT++ is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along
* with IT++. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include <itpp/comm/bch.h>
#include <itpp/base/binary.h>
#include <itpp/base/specmat.h>
#include <itpp/base/array.h>
namespace itpp
{
//---------------------- BCH -----------------------------------
BCH::BCH(int in_n, int in_k, int in_t, const ivec &genpolynom, bool sys) :
n(in_n), k(in_k), t(in_t), systematic(sys)
{
//fix the generator polynomial g(x).
ivec exponents = zeros_i(n - k + 1);
bvec temp = oct2bin(genpolynom, 0);
for (int i = 0; i < temp.length(); i++) {
exponents(i) = static_cast<int>(temp(temp.length() - i - 1)) - 1;
}
g.set(n + 1, exponents);
}
BCH::BCH(int in_n, int in_t, bool sys) :
n(in_n), t(in_t), systematic(sys)
{
// step 1: determine cyclotomic cosets
// although we use elements in GF(n+1), we do not use GFX class, but ivec,
// since we have to multiply by 2 and need the exponents in clear notation
int m_tmp = int2bits(n);
int two_pow_m = 1 << m_tmp;
it_assert(two_pow_m == n + 1, "BCH::BCH(): (in_n + 1) is not a power of 2");
it_assert((t > 0) && (2 * t < n), "BCH::BCH(): in_t must be positive and smaller than n/2");
Array<ivec> cyclo_sets(2 * t + 1);
// unfortunately it is not obvious how many cyclotomic cosets exist (?)
// a bad guess is n/2, which can be a whole lot...
// but we only need 2*t + 1 at maximum for step 2.
// (since all elements are sorted ascending [cp. comment at 2.], the last
// coset we need is the one with coset leader 2t. + coset {0})
// start with {0} as first set
int curr_coset_idx = 0;
cyclo_sets(curr_coset_idx) = zeros_i(1);
int cycl_element = 1;
do {
bool found = false;
// find next element, which is not in a previous coset
do {
int i = 0;
// we do not have to search the first coset, since this is always {0}
found = false;
while ((!found) && (i <= curr_coset_idx)) {
int j = 0;
while ((!found) && (j < cyclo_sets(i).length())) {
if (cycl_element == cyclo_sets(i)(j)) {
found = true;
}
j++;
}
i++;
}
cycl_element++;
}
while ((found) && (cycl_element <= 2 * t));
if (!found) {
// found one
cyclo_sets(++curr_coset_idx).set_size(m_tmp);
// a first guess (we delete afterwards back to correct length):
// there should be no more than m elements in one coset
int element_index = 0;
cyclo_sets(curr_coset_idx)(element_index) = cycl_element - 1;
// multiply by two (mod 2^m - 1) as long as new elements are created
while ((((cyclo_sets(curr_coset_idx)(element_index) * 2) % n)
!= cyclo_sets(curr_coset_idx)(0))
&& (element_index < m_tmp - 1)) {
element_index++;
cyclo_sets(curr_coset_idx)(element_index)
= (cyclo_sets(curr_coset_idx)(element_index - 1) * 2) % n;
}
// delete unused digits
if (element_index + 1 < m_tmp - 1) {
cyclo_sets(curr_coset_idx).del(element_index + 1, m_tmp - 1);
}
}
}
while ((cycl_element <= 2 * t) && (curr_coset_idx <= 2 * t));
// step 2: find all cosets that contain all the powers (1..2t) of alpha
// this is pretty easy, since the cosets are in ascending order
// (if regarding the first (=primitive) element for ordering) -
// all due to the method, they have been constructed
// Since we only calculated all cosets up to 2t, this is even trivial
// => we take all curr_coset_idx Cosets
// maximum index of cosets to be considered
int max_coset_index = curr_coset_idx;
// step 3: multiply the minimal polynomials corresponding to this sets
// of powers
g.set(two_pow_m, ivec("0")); // = alpha^0 = 1
ivec min_poly_exp(2);
min_poly_exp(1) = 0; // product of (x-alpha^cycl_element)
for (int i = 1; i <= max_coset_index; i++) {
for (int j = 0; j < cyclo_sets(i).length(); j++) {
min_poly_exp(0) = cyclo_sets(i)(j);
g *= GFX(two_pow_m, min_poly_exp);
}
}
// finally determine k
k = n - g.get_true_degree();
}
void BCH::encode(const bvec &uncoded_bits, bvec &coded_bits)
{
int i, j, degree;
int iterations = floor_i(static_cast<double>(uncoded_bits.length()) / k);
GFX m(n + 1, k);
GFX c(n + 1, n);
GFX r(n + 1, n - k);
GFX uncoded_shifted(n + 1, n);
coded_bits.set_size(iterations * n, false);
bvec mbit(k), cbit(n);
if (systematic)
for (i = 0; i < n - k; i++)
uncoded_shifted[i] = GF(n + 1, -1);
for (i = 0; i < iterations; i++) {
//Fix the message polynom m(x).
mbit = uncoded_bits.mid(i * k, k);
for (j = 0; j < k; j++) {
degree = static_cast<int>(mbit(k - j - 1)) - 1;
// all bits should be mapped first bit <-> highest degree,
// e.g. 1100 <-> m(x)=x^3 + x^2, but GFX indexes identically
// with exponent m[0] <-> coefficient of x^0
m[j] = GF(n + 1, degree);
if (systematic) {
uncoded_shifted[j + n - k] = m[j];
}
}
//Fix the outputbits cbit.
if (systematic) {
r = modgfx(uncoded_shifted, g);
c = uncoded_shifted - r;
// uncoded_shifted has coefficients from x^(n-k)..x^(n-1)
// and r has coefficients from x^0..x^(n-k-1).
// Thus, this sum perfectly fills c.
}
else {
c = g * m;
}
for (j = 0; j < n; j++) {
if (c[j] == GF(n + 1, 0)) {
cbit(n - j - 1) = 1; // again reverse mapping like mbit(.)
}
else {
cbit(n - j - 1) = 0;
}
}
coded_bits.replace_mid(i * n, cbit);
}
}
bvec BCH::encode(const bvec &uncoded_bits)
{
bvec coded_bits;
encode(uncoded_bits, coded_bits);
return coded_bits;
}
bool BCH::decode(const bvec &coded_bits, bvec &decoded_message, bvec &cw_isvalid)
{
bool decoderfailure, no_dec_failure;
int j, i, degree, kk, foundzeros;
ivec errorpos;
int iterations = floor_i(static_cast<double>(coded_bits.length()) / n);
bvec rbin(n), mbin(k);
decoded_message.set_size(iterations * k, false);
cw_isvalid.set_length(iterations);
GFX r(n + 1, n - 1), c(n + 1, n - 1), m(n + 1, k - 1), S(n + 1, 2 * t), Lambda(n + 1),
OldLambda(n + 1), T(n + 1), Omega(n + 1), One(n + 1, (char*) "0");
GF delta(n + 1);
no_dec_failure = true;
for (i = 0; i < iterations; i++) {
decoderfailure = false;
//Fix the received polynomial r(x)
rbin = coded_bits.mid(i * n, n);
for (j = 0; j < n; j++) {
degree = static_cast<int>(rbin(n - j - 1)) - 1;
// reverse mapping, see encode(.)
r[j] = GF(n + 1, degree);
}
//Fix the syndrome polynomial S(x).
S.clear();
for (j = 1; j <= 2 * t; j++) {
S[j] = r(GF(n + 1, j));
}
if (S.get_true_degree() >= 1) { //Errors in the received word
//Iterate to find Lambda(x).
kk = 0;
Lambda = GFX(n + 1, (char*) "0");
T = GFX(n + 1, (char*) "0");
while (kk < t) {
Omega = Lambda * (S + One);
delta = Omega[2 * kk + 1];
OldLambda = Lambda;
Lambda = OldLambda + delta * (GFX(n + 1, (char*) "-1 0") * T);
if ((delta == GF(n + 1, -1)) || (OldLambda.get_true_degree() > kk)) {
T = GFX(n + 1, (char*) "-1 -1 0") * T;
}
else {
T = (GFX(n + 1, (char*) "-1 0") * OldLambda) / delta;
}
kk = kk + 1;
}
//Find the zeros to Lambda(x).
errorpos.set_size(Lambda.get_true_degree());
foundzeros = 0;
for (j = 0; j <= n - 1; j++) {
if (Lambda(GF(n + 1, j)) == GF(n + 1, -1)) {
errorpos(foundzeros) = (n - j) % n;
foundzeros += 1;
if (foundzeros >= Lambda.get_true_degree()) {
break;
}
}
}
if (foundzeros != Lambda.get_true_degree()) {
decoderfailure = true;
}
else {
//Correct the codeword.
for (j = 0; j < foundzeros; j++) {
rbin(n - errorpos(j) - 1) += 1; // again, reverse mapping
}
//Reconstruct the corrected codeword.
for (j = 0; j < n; j++) {
degree = static_cast<int>(rbin(n - j - 1)) - 1;
c[j] = GF(n + 1, degree);
}
//Code word validation.
S.clear();
for (j = 1; j <= 2 * t; j++) {
S[j] = c(GF(n + 1, j));
}
if (S.get_true_degree() <= 0) { //c(x) is a valid codeword.
decoderfailure = false;
}
else {
decoderfailure = true;
}
}
}
else {
c = r;
decoderfailure = false;
}
//Construct the message bit vector.
if (decoderfailure == false) { //c(x) is a valid codeword.
if (c.get_true_degree() > 1) {
if (systematic) {
for (j = 0; j < k; j++)
m[j] = c[n - k + j];
}
else {
m = divgfx(c, g);
}
mbin.clear();
for (j = 0; j <= m.get_true_degree(); j++) {
if (m[j] == GF(n + 1, 0)) {
mbin(k - j - 1) = 1;
}
}
}
else { //The zero word was transmitted
mbin = zeros_b(k);
m = GFX(n + 1, (char*) "-1");
}
}
else { //Decoder failure.
// for a systematic code it is better to extract the undecoded message
// from the received code word, i.e. obtaining a bit error
// prob. p_b << 1/2, than setting all-zero (p_b = 1/2)
if (systematic) {
mbin = coded_bits.mid(i * n, k);
}
else {
mbin = zeros_b(k);
}
no_dec_failure = false;
}
decoded_message.replace_mid(i * k, mbin);
cw_isvalid(i) = (!decoderfailure);
}
return no_dec_failure;
}
void BCH::decode(const bvec &coded_bits, bvec &decoded_bits)
{
bvec cw_isvalid;
if (!decode(coded_bits, decoded_bits, cw_isvalid)) {
for (int i = 0; i < cw_isvalid.length(); i++) {
if (!cw_isvalid(i)) {
decoded_bits.replace_mid(i * k, zeros_b(k));
}
}
}
}
bvec BCH::decode(const bvec &coded_bits)
{
bvec decoded_bits;
decode(coded_bits, decoded_bits);
return decoded_bits;
}
// --- Soft-decision decoding is not implemented ---
void BCH::decode(const vec &, bvec &)
{
it_error("BCH::decode(): Soft-decision decoding is not implemented");
}
bvec BCH::decode(const vec &)
{
it_error("BCH::decode(): Soft-decision decoding is not implemented");
return bvec();
}
} // namespace itpp
|