1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
|
/*!
* \file
* \brief Implementation of vector (MIMO) modulator classes
* \author Mirsad Cirkic, Erik G. Larsson and Adam Piatyszek
*
* -------------------------------------------------------------------------
*
* Copyright (C) 1995-2012 (see AUTHORS file for a list of contributors)
*
* This file is part of IT++ - a C++ library of mathematical, signal
* processing, speech processing, and communications classes and functions.
*
* IT++ is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* IT++ is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along
* with IT++. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include <itpp/comm/modulator_nd.h>
#include <itpp/comm/commfunc.h>
#include <itpp/base/algebra/cholesky.h>
#include <itpp/base/algebra/inv.h>
#include <itpp/base/matfunc.h>
#include <itpp/base/math/elem_math.h>
#include <itpp/base/math/log_exp.h>
#include <itpp/base/converters.h>
#include <itpp/base/itcompat.h>
#include <itpp/base/sort.h>
#include <itpp/stat/misc_stat.h>
#include <cmath>
#include <iostream>
#include <iomanip>
namespace itpp
{
// ----------------------------------------------------------------------
// Modulator_ND
// ----------------------------------------------------------------------
QLLRvec Modulator_ND::probabilities(QLLR l)
{
QLLRvec result(2);
if(l < 0) { // this can be done more efficiently
result(1) = -llrcalc.jaclog(0, -l);
result(0) = result(1) - l;
}
else {
result(0) = -llrcalc.jaclog(0, l);
result(1) = result(0) + l;
}
return result;
}
void Modulator_ND::update_LLR(const Array<QLLRvec> &logP_apriori, int s,
QLLR scaled_norm, int j, QLLRvec &p1,
QLLRvec &p0)
{
QLLR log_apriori_prob_const_point = 0;
int b = 0;
for (int i = 0; i < k(j); i++) {
log_apriori_prob_const_point +=
((bitmap(j)(s, i) == 0) ? logP_apriori(b)(1) : logP_apriori(b)(0));
b++;
}
b = 0;
for (int i = 0; i < k(j); i++) {
if (bitmap(j)(s, i) == 0) {
p1(b) = llrcalc.jaclog(p1(b), scaled_norm
+ log_apriori_prob_const_point);
}
else {
p0(b) = llrcalc.jaclog(p0(b), scaled_norm
+ log_apriori_prob_const_point);
}
b++;
}
}
void Modulator_ND::update_LLR(const Array<QLLRvec> &logP_apriori,
const ivec &s, QLLR scaled_norm,
QLLRvec &p1, QLLRvec &p0)
{
QLLR log_apriori_prob_const_point = 0;
int b = 0;
for (int j = 0; j < nt; j++) {
for (int i = 0; i < k(j); i++) {
log_apriori_prob_const_point +=
((bitmap(j)(s[j], i) == 0) ? logP_apriori(b)(1) : logP_apriori(b)(0));
b++;
}
}
b = 0;
for (int j = 0; j < nt; j++) {
for (int i = 0; i < k(j); i++) {
if (bitmap(j)(s[j], i) == 0) {
p1(b) = llrcalc.jaclog(p1(b), scaled_norm
+ log_apriori_prob_const_point);
}
else {
p0(b) = llrcalc.jaclog(p0(b), scaled_norm
+ log_apriori_prob_const_point);
}
b++;
}
}
}
void Modulator_ND::marginalize_bits(itpp::QLLRvec& llr, Soft_Demod_Method method) const
{
if(method == FULL_ENUM_LOGMAP) {
// -- Demodulate the last 3 bits. The demodulation is hardcoded
// -- to avoid initialization of many but tiny inner-loops
demodllrbit0(llr[0]);
if(nb > 1) demodllrbit1(llr[1]);
if(nb > 2) demodllrbit2(llr[2]);
// -- Demodulate the remaining bits except the first one
QLLR logsum0, logsum1;
const QLLR *const addrfirst = Qnorms._data();
const QLLR *const addrsemilast = addrfirst + (1 << (nb - 1)), *const addrlast = addrfirst + (1 << nb);
const QLLR *Qptr;
for(int bi = 3; bi < nb - 1 ; bi++) { // Run the loops for bits 3,...,nb-1.
logsum0 = -QLLR_MAX;
logsum1 = -QLLR_MAX;
const int forhalfdiff = 1 << bi, fordiff = 2 * forhalfdiff, fordbldiff = 2 * fordiff;
Qptr = addrfirst;
const QLLR *const addr1 = addrfirst + forhalfdiff, *const addr2 = addr1 + fordiff, *const addr3 = addrlast - fordiff;
while(Qptr < addr1) logsum0 = llrcalc.jaclog(*(Qptr++), logsum0);
while(Qptr < addr2) logsum1 = llrcalc.jaclog(*(Qptr++), logsum1);
const QLLR *addrdyn0, *addrdyn1;
while(Qptr < addr3) {
addrdyn0 = Qptr + fordiff;
addrdyn1 = Qptr + fordbldiff;
while(Qptr < addrdyn0) logsum0 = llrcalc.jaclog(*(Qptr++), logsum0);
while(Qptr < addrdyn1) logsum1 = llrcalc.jaclog(*(Qptr++), logsum1);
}
while(Qptr < addrlast) logsum0 = llrcalc.jaclog(*(Qptr++), logsum0);
llr[bi] = logsum0 - logsum1;
}
// -- Demodulate the first bit
logsum0 = -QLLR_MAX;
logsum1 = -QLLR_MAX;
Qptr = addrfirst;
while(Qptr < addrsemilast) logsum0 = llrcalc.jaclog(*(Qptr++), logsum0);
while(Qptr < addrlast) logsum1 = llrcalc.jaclog(*(Qptr++), logsum1);
llr[nb - 1] = logsum0 - logsum1;
}
else if(method == FULL_ENUM_MAXLOG) {
// -- Demodulate the last 3 bits. The demodulation is hardcoded to
// -- avoid initialization of many but tiny inner-loops.
demodmaxbit0(llr[0]);
if(nb > 1) demodmaxbit1(llr[1]);
if(nb > 2) demodmaxbit2(llr[2]);
// -- Demodulate the remaining bits except the first one
QLLR logmax0, logmax1;
const QLLR *const addrfirst = Qnorms._data();
const QLLR *const addrsemilast = addrfirst + (1 << (nb - 1)), *const addrlast = addrfirst + (1 << nb);
const QLLR *Qptr;
for(int bi = 3; bi < nb - 1; bi++) { // Run the loops for bits nb-3,nb-4,...,2.
logmax0 = -QLLR_MAX;
logmax1 = -QLLR_MAX;
const int forhalfdiff = 1 << bi, fordiff = 2 * forhalfdiff, fordbldiff = 2 * fordiff;
Qptr = addrfirst;
const QLLR *const addr1 = addrfirst + forhalfdiff, *const addr2 = addr1 + fordiff, *const addr3 = addrlast - fordiff;
for(; Qptr < addr1; Qptr++) logmax0 = *Qptr > logmax0 ? *Qptr : logmax0;
for(; Qptr < addr2; Qptr++) logmax1 = *Qptr > logmax1 ? *Qptr : logmax1;
const QLLR *addrdyn0, *addrdyn1;
while(Qptr < addr3) {
addrdyn0 = Qptr + fordiff;
addrdyn1 = Qptr + fordbldiff;
for(; Qptr < addrdyn0; Qptr++) logmax0 = *Qptr > logmax0 ? *Qptr : logmax0;
for(; Qptr < addrdyn1; Qptr++) logmax1 = *Qptr > logmax1 ? *Qptr : logmax1;
}
for(; Qptr < addrlast; Qptr++) logmax0 = *Qptr > logmax0 ? *Qptr : logmax0;
llr[bi] = logmax0 - logmax1;
}
// -- Demodulate the first bit
logmax0 = -QLLR_MAX;
logmax1 = -QLLR_MAX;
Qptr = addrfirst;
for(; Qptr < addrsemilast; Qptr++) logmax0 = *Qptr > logmax0 ? *Qptr : logmax0;
for(; Qptr < addrlast; Qptr++) logmax1 = *Qptr > logmax1 ? *Qptr : logmax1;
llr[nb - 1] = logmax0 - logmax1;
}
else it_error("Improper soft demodulation method\n.");
}
void Modulator_ND::demodllrbit0(itpp::QLLR& llr) const
{
using namespace itpp;
QLLR logsum0 = -QLLR_MAX, logsum1 = -QLLR_MAX;
const QLLR *const addrfirst = Qnorms._data(), *const addr3 = addrfirst + (1 << nb) - 1;
const QLLR *Qptr = addrfirst;
logsum0 = llrcalc.jaclog(*(Qptr++), logsum0);
logsum1 = llrcalc.jaclog(*(Qptr++), logsum1);
logsum1 = llrcalc.jaclog(*(Qptr++), logsum1);
while(Qptr < addr3) {
logsum0 = llrcalc.jaclog(*(Qptr++), logsum0);
logsum0 = llrcalc.jaclog(*(Qptr++), logsum0);
logsum1 = llrcalc.jaclog(*(Qptr++), logsum1);
logsum1 = llrcalc.jaclog(*(Qptr++), logsum1);
}
logsum0 = llrcalc.jaclog(*(Qptr++), logsum0);
llr = logsum0 - logsum1;
}
void Modulator_ND::demodllrbit1(itpp::QLLR& llr) const
{
using namespace itpp;
QLLR logsum0 = -QLLR_MAX, logsum1 = -QLLR_MAX;
const QLLR *const addrfirst = Qnorms._data(), *const addr3 = addrfirst + (1 << nb) - 2;
const QLLR *Qptr = addrfirst;
logsum0 = llrcalc.jaclog(*(Qptr++), logsum0);
logsum0 = llrcalc.jaclog(*(Qptr++), logsum0);
logsum1 = llrcalc.jaclog(*(Qptr++), logsum1);
logsum1 = llrcalc.jaclog(*(Qptr++), logsum1);
logsum1 = llrcalc.jaclog(*(Qptr++), logsum1);
logsum1 = llrcalc.jaclog(*(Qptr++), logsum1);
while(Qptr < addr3) {
logsum0 = llrcalc.jaclog(*(Qptr++), logsum0);
logsum0 = llrcalc.jaclog(*(Qptr++), logsum0);
logsum0 = llrcalc.jaclog(*(Qptr++), logsum0);
logsum0 = llrcalc.jaclog(*(Qptr++), logsum0);
logsum1 = llrcalc.jaclog(*(Qptr++), logsum1);
logsum1 = llrcalc.jaclog(*(Qptr++), logsum1);
logsum1 = llrcalc.jaclog(*(Qptr++), logsum1);
logsum1 = llrcalc.jaclog(*(Qptr++), logsum1);
}
logsum0 = llrcalc.jaclog(*(Qptr++), logsum0);
logsum0 = llrcalc.jaclog(*(Qptr++), logsum0);
llr = logsum0 - logsum1;
}
void Modulator_ND::demodllrbit2(itpp::QLLR& llr) const
{
using namespace itpp;
QLLR logsum0 = -QLLR_MAX, logsum1 = -QLLR_MAX;
const QLLR *const addrfirst = Qnorms._data(), *const addr3 = addrfirst + (1 << nb) - 4;
const QLLR *Qptr = addrfirst;
logsum0 = llrcalc.jaclog(*(Qptr++), logsum0);
logsum0 = llrcalc.jaclog(*(Qptr++), logsum0);
logsum0 = llrcalc.jaclog(*(Qptr++), logsum0);
logsum0 = llrcalc.jaclog(*(Qptr++), logsum0);
logsum1 = llrcalc.jaclog(*(Qptr++), logsum1);
logsum1 = llrcalc.jaclog(*(Qptr++), logsum1);
logsum1 = llrcalc.jaclog(*(Qptr++), logsum1);
logsum1 = llrcalc.jaclog(*(Qptr++), logsum1);
logsum1 = llrcalc.jaclog(*(Qptr++), logsum1);
logsum1 = llrcalc.jaclog(*(Qptr++), logsum1);
logsum1 = llrcalc.jaclog(*(Qptr++), logsum1);
logsum1 = llrcalc.jaclog(*(Qptr++), logsum1);
while(Qptr < addr3) {
logsum0 = llrcalc.jaclog(*(Qptr++), logsum0);
logsum0 = llrcalc.jaclog(*(Qptr++), logsum0);
logsum0 = llrcalc.jaclog(*(Qptr++), logsum0);
logsum0 = llrcalc.jaclog(*(Qptr++), logsum0);
logsum0 = llrcalc.jaclog(*(Qptr++), logsum0);
logsum0 = llrcalc.jaclog(*(Qptr++), logsum0);
logsum0 = llrcalc.jaclog(*(Qptr++), logsum0);
logsum0 = llrcalc.jaclog(*(Qptr++), logsum0);
logsum1 = llrcalc.jaclog(*(Qptr++), logsum1);
logsum1 = llrcalc.jaclog(*(Qptr++), logsum1);
logsum1 = llrcalc.jaclog(*(Qptr++), logsum1);
logsum1 = llrcalc.jaclog(*(Qptr++), logsum1);
logsum1 = llrcalc.jaclog(*(Qptr++), logsum1);
logsum1 = llrcalc.jaclog(*(Qptr++), logsum1);
logsum1 = llrcalc.jaclog(*(Qptr++), logsum1);
logsum1 = llrcalc.jaclog(*(Qptr++), logsum1);
}
logsum0 = llrcalc.jaclog(*(Qptr++), logsum0);
logsum0 = llrcalc.jaclog(*(Qptr++), logsum0);
logsum0 = llrcalc.jaclog(*(Qptr++), logsum0);
logsum0 = llrcalc.jaclog(*(Qptr++), logsum0);
llr = logsum0 - logsum1;
}
void Modulator_ND::demodmaxbit0(itpp::QLLR& maxllr) const
{
using namespace itpp;
QLLR logmax0 = -QLLR_MAX, logmax1 = -QLLR_MAX;
const QLLR *const addrfirst = Qnorms._data(), *const addr3 = addrfirst + (1 << nb) - 1;
const QLLR *Qptr = addrfirst;
logmax0 = *Qptr > logmax0 ? *Qptr : logmax0;
Qptr++;
logmax1 = *Qptr > logmax1 ? *Qptr : logmax1;
Qptr++;
logmax1 = *Qptr > logmax1 ? *Qptr : logmax1;
Qptr++;
while(Qptr < addr3) {
logmax0 = *Qptr > logmax0 ? *Qptr : logmax0;
Qptr++;
logmax0 = *Qptr > logmax0 ? *Qptr : logmax0;
Qptr++;
logmax1 = *Qptr > logmax1 ? *Qptr : logmax1;
Qptr++;
logmax1 = *Qptr > logmax1 ? *Qptr : logmax1;
Qptr++;
}
logmax0 = *Qptr > logmax0 ? *Qptr : logmax0;
maxllr = logmax0 - logmax1;
}
void Modulator_ND::demodmaxbit1(itpp::QLLR& maxllr) const
{
using namespace itpp;
QLLR logmax0 = -QLLR_MAX, logmax1 = -QLLR_MAX;
const QLLR *const addrfirst = Qnorms._data(), *const addr3 = addrfirst + (1 << nb) - 2;
const QLLR *Qptr = addrfirst;
logmax0 = *Qptr > logmax0 ? *Qptr : logmax0;
Qptr++;
logmax0 = *Qptr > logmax0 ? *Qptr : logmax0;
Qptr++;
logmax1 = *Qptr > logmax1 ? *Qptr : logmax1;
Qptr++;
logmax1 = *Qptr > logmax1 ? *Qptr : logmax1;
Qptr++;
logmax1 = *Qptr > logmax1 ? *Qptr : logmax1;
Qptr++;
logmax1 = *Qptr > logmax1 ? *Qptr : logmax1;
Qptr++;
while(Qptr < addr3) {
logmax0 = *Qptr > logmax0 ? *Qptr : logmax0;
Qptr++;
logmax0 = *Qptr > logmax0 ? *Qptr : logmax0;
Qptr++;
logmax0 = *Qptr > logmax0 ? *Qptr : logmax0;
Qptr++;
logmax0 = *Qptr > logmax0 ? *Qptr : logmax0;
Qptr++;
logmax1 = *Qptr > logmax1 ? *Qptr : logmax1;
Qptr++;
logmax1 = *Qptr > logmax1 ? *Qptr : logmax1;
Qptr++;
logmax1 = *Qptr > logmax1 ? *Qptr : logmax1;
Qptr++;
logmax1 = *Qptr > logmax1 ? *Qptr : logmax1;
Qptr++;
}
logmax0 = *Qptr > logmax0 ? *Qptr : logmax0;
Qptr++;
logmax0 = *Qptr > logmax0 ? *Qptr : logmax0;
maxllr = logmax0 - logmax1;
}
void Modulator_ND::demodmaxbit2(itpp::QLLR& maxllr) const
{
using namespace itpp;
QLLR logmax0 = -QLLR_MAX, logmax1 = -QLLR_MAX;
const QLLR *const addrfirst = Qnorms._data(), *const addr3 = addrfirst + (1 << nb) - 4;
const QLLR *Qptr = addrfirst;
logmax0 = *Qptr > logmax0 ? *Qptr : logmax0;
Qptr++;
logmax0 = *Qptr > logmax0 ? *Qptr : logmax0;
Qptr++;
logmax0 = *Qptr > logmax0 ? *Qptr : logmax0;
Qptr++;
logmax0 = *Qptr > logmax0 ? *Qptr : logmax0;
Qptr++;
logmax1 = *Qptr > logmax1 ? *Qptr : logmax1;
Qptr++;
logmax1 = *Qptr > logmax1 ? *Qptr : logmax1;
Qptr++;
logmax1 = *Qptr > logmax1 ? *Qptr : logmax1;
Qptr++;
logmax1 = *Qptr > logmax1 ? *Qptr : logmax1;
Qptr++;
logmax1 = *Qptr > logmax1 ? *Qptr : logmax1;
Qptr++;
logmax1 = *Qptr > logmax1 ? *Qptr : logmax1;
Qptr++;
logmax1 = *Qptr > logmax1 ? *Qptr : logmax1;
Qptr++;
logmax1 = *Qptr > logmax1 ? *Qptr : logmax1;
Qptr++;
while(Qptr < addr3) {
logmax0 = *Qptr > logmax0 ? *Qptr : logmax0;
Qptr++;
logmax0 = *Qptr > logmax0 ? *Qptr : logmax0;
Qptr++;
logmax0 = *Qptr > logmax0 ? *Qptr : logmax0;
Qptr++;
logmax0 = *Qptr > logmax0 ? *Qptr : logmax0;
Qptr++;
logmax0 = *Qptr > logmax0 ? *Qptr : logmax0;
Qptr++;
logmax0 = *Qptr > logmax0 ? *Qptr : logmax0;
Qptr++;
logmax0 = *Qptr > logmax0 ? *Qptr : logmax0;
Qptr++;
logmax0 = *Qptr > logmax0 ? *Qptr : logmax0;
Qptr++;
logmax1 = *Qptr > logmax1 ? *Qptr : logmax1;
Qptr++;
logmax1 = *Qptr > logmax1 ? *Qptr : logmax1;
Qptr++;
logmax1 = *Qptr > logmax1 ? *Qptr : logmax1;
Qptr++;
logmax1 = *Qptr > logmax1 ? *Qptr : logmax1;
Qptr++;
logmax1 = *Qptr > logmax1 ? *Qptr : logmax1;
Qptr++;
logmax1 = *Qptr > logmax1 ? *Qptr : logmax1;
Qptr++;
logmax1 = *Qptr > logmax1 ? *Qptr : logmax1;
Qptr++;
logmax1 = *Qptr > logmax1 ? *Qptr : logmax1;
Qptr++;
}
logmax0 = *Qptr > logmax0 ? *Qptr : logmax0;
Qptr++;
logmax0 = *Qptr > logmax0 ? *Qptr : logmax0;
Qptr++;
logmax0 = *Qptr > logmax0 ? *Qptr : logmax0;
Qptr++;
logmax0 = *Qptr > logmax0 ? *Qptr : logmax0;
maxllr = logmax0 - logmax1;
}
Array<QLLRvec> Modulator_ND::probabilities(const QLLRvec &l)
{
Array<QLLRvec> result(length(l));
for(int i = 0; i < length(l); i++) {
result(i) = probabilities(l(i));
}
return result;
}
// ----------------------------------------------------------------------
// Modulator_NRD
// ----------------------------------------------------------------------
Array<vec> Modulator_NRD::get_symbols() const
{
Array<vec> retvec(nt);
for(int i = 0; i < nt; ++i) {
it_assert(M.length() == symbols.length(), "Modulator_NRD::get_symbols(): "
"The length of M vector is different than length of the symbols vector.");
retvec(i) = symbols(i).left(M(i));
}
return retvec;
}
void Modulator_NRD::modulate_bits(const bvec &bits, vec &out_symbols) const
{
it_assert(length(bits) == sum(k), "Modulator_NRD::modulate_bits(): "
"The number of input bits does not match.");
out_symbols.set_size(nt);
int b = 0;
for(int i = 0; i < nt; ++i) {
int symb = bin2dec(bits.mid(b, k(i)));
out_symbols(i) = symbols(i)(bits2symbols(i)(symb));
b += k(i);
}
}
vec Modulator_NRD::modulate_bits(const bvec &bits) const
{
vec result(nt);
modulate_bits(bits, result);
return result;
}
void Modulator_NRD::init_soft_demodulator(const itpp::mat& H_in, const double& sigma2)
{
using namespace itpp;
it_assert(H_in.cols() == nt, "Number of Tx antennas is wrong.\n");
it_assert(sum(k) < 32, "Number of total bits per transmission can not be larger than 32.\n");
it_assert(pow2i(sum(k)) == prod(M), "Modulator must use exhaustive constellations, i.e., #bits=log2(#symbs).\n");
H = H_in;
bitcumsum = reverse(cumsum(reverse(k)) - reverse(k)); // Shifted cummulative sum
nb = sum(k);
hnorms.set_size(1 << nb);
Qnorms.set_size(1 << nb);
hspacings.set_size(nt);
yspacings.set_size(nt);
bpos2cpos.set_size(nb);
gray2dec.set_size(nt);
gaussnorm = 2 * sigma2;
vec startsymbvec(nt);
for(int ci = 0; ci < nt; ci++) startsymbvec[ci] = symbols(ci)[0];
itpp::vec Hx = H * startsymbvec;
for(int ci = 0, bcs = 0; ci < nt; bcs += k[ci++]) {
for(int bi = 0; bi < k[ci]; bi++) bpos2cpos[bcs + bi] = ci;
gray2dec(ci).set_size(M[ci]);
for(int si = 0; si < M[ci]; si++) gray2dec(ci)[si ^(si >> 1)] = si;
yspacings(ci).set_size(M[ci] - 1);
hspacings(ci).set_size(M[ci] - 1);
for(int si = 0; si < M[ci] - 1; si++) {
double xspacing = symbols(ci)[bits2symbols(ci)[(si + 1) ^((si + 1) >> 1)]];
xspacing -= symbols(ci)[bits2symbols(ci)[si ^(si >> 1)]];
hspacings(ci)(si) = H.get_col(ci) * xspacing;
}
}
bpos2cpos = reverse(bpos2cpos);
unsigned bitstring = 0, ind = 0;
hxnormupdate(Hx, bitstring, ind, nb - 1);
demod_initialized = true;
}
void Modulator_NRD::demodulate_soft_bits(const itpp::vec& y,
const itpp::QLLRvec& llr_apr,
itpp::QLLRvec& llr,
Soft_Demod_Method method)
{
using namespace itpp;
it_assert_debug(demod_initialized, "You have to first run init_soft_demodulator().\n");
it_assert_debug(H.rows() == y.length(), "The dimensions are not correct.\n");
it_assert_debug(llr_apr.length() == nb, "The LLR_apr length is not correct.\n");
// -- Prepare all the norms with the newly received vectory y
llr.set_size(nb);
llrapr = reverse(llr_apr); /* The bits are reversed due to the
norm-updating functions having the rightmost bit
as the least significant*/
vec ytil = H.T() * y;
vec startsymbvec(nt);
for(int ci = 0; ci < nt; ci++) startsymbvec[ci] = symbols(ci)[0];
double yx = 2*(ytil * startsymbvec);
QLLR lapr = 0;
for(int bi = 0; bi < nb; lapr -= llrcalc.jaclog(0, -llrapr[bi++]));
for(int ci = 0; ci < nt; ci++) for(int si = 0; si < M[ci] - 1; si++) {
double xspacing = symbols(ci)[bits2symbols(ci)[(si + 1) ^((si + 1) >> 1)]];
xspacing -= symbols(ci)[bits2symbols(ci)[si ^(si >> 1)]];
yspacings(ci)[si] = 2*(ytil(ci) * xspacing);
}
unsigned bitstring = 0, ind = 0;
yxnormupdate(yx, lapr, bitstring, ind, nb - 1); // Recursive update of all the norms
marginalize_bits(llr,method); // Perform the appropriate bit marginalization
llr = reverse(llr);
}
void Modulator_NRD::demodulate_soft_bits(const vec &y, const mat &H,
double sigma2,
const QLLRvec &LLR_apriori,
QLLRvec &LLR_aposteriori,
Soft_Demod_Method method)
{
switch(method) {
case ZF_LOGMAP: {
it_assert(H.rows() >= H.cols(), "Modulator_NRD::demodulate_soft_bits():"
" ZF demodulation impossible for undetermined systems");
// Set up the ZF detector
mat Ht = H.T();
mat inv_HtH = inv(Ht * H);
vec shat = inv_HtH * Ht * y;
vec h = ones(shat.size());
for(int i = 0; i < shat.size(); ++i) {
// noise covariance of shat
double sigma_zf = std::sqrt(inv_HtH(i, i) * sigma2);
shat(i) /= sigma_zf;
h(i) /= sigma_zf;
}
demodulate_soft_bits(shat, h, 1.0, zeros_i(sum(k)), LLR_aposteriori);
}
break;
default: {
init_soft_demodulator(H, sigma2);
demodulate_soft_bits(y, LLR_apriori, LLR_aposteriori, method);
}
}
}
QLLRvec Modulator_NRD::demodulate_soft_bits(const vec &y, const mat &H,
double sigma2,
const QLLRvec &LLR_apriori,
Soft_Demod_Method method)
{
QLLRvec result;
demodulate_soft_bits(y, H, sigma2, LLR_apriori, result, method);
return result;
}
void Modulator_NRD::demodulate_soft_bits(const vec &y, const vec &h,
double sigma2,
const QLLRvec &LLR_apriori,
QLLRvec &LLR_aposteriori)
{
it_assert(length(LLR_apriori) == sum(k),
"Modulator_NRD::demodulate_soft_bits(): Wrong sizes");
it_assert((length(h) == length(y)) && (length(h) == nt),
"Modulator_NRD::demodulate_soft_bits(): Wrong sizes");
// set size of the output vector
LLR_aposteriori.set_size(LLR_apriori.size());
// normalisation constant "minus one over two sigma^2"
double moo2s2 = -1.0 / (2.0 * sigma2);
int b = 0;
for(int i = 0; i < nt; ++i) {
QLLRvec bnum = -QLLR_MAX * ones_i(k(i));
QLLRvec bdenom = bnum;
Array<QLLRvec> logP_apriori = probabilities(LLR_apriori(b, b + k(i) - 1));
for(int j = 0; j < M(i); ++j) {
double norm2 = moo2s2 * sqr(y(i) - h(i) * symbols(i)(j));
QLLR scaled_norm = llrcalc.to_qllr(norm2);
update_LLR(logP_apriori, j, scaled_norm, i, bnum, bdenom);
}
LLR_aposteriori.set_subvector(b, bnum - bdenom);
b += k(i);
}
}
void Modulator_NRD::hxnormupdate(itpp::vec& Hx, unsigned& bitstring, unsigned& ind, unsigned bit)
{
using namespace itpp;
const unsigned col = bpos2cpos[bit];
if(bit < 1) {
hnorms[ind++] = Hx * Hx;
unsigned oldi = gray2dec(col)[bitstring & (M[col] - 1)];
bitstring ^= 1;
unsigned newi = gray2dec(col)[bitstring & (M[col] - 1)];
Hx += oldi > newi ? -hspacings(col)(newi) : hspacings(col)(oldi);
hnorms[ind++] = Hx * Hx;
return;
}
hxnormupdate(Hx, bitstring, ind, bit - 1);
unsigned oldi = gray2dec(col)[(bitstring >> bitcumsum[col]) & (M[col] - 1)];
bitstring ^= 1 << bit;
unsigned newi = gray2dec(col)[(bitstring >> bitcumsum[col]) & (M[col] - 1)];
Hx += oldi > newi ? -hspacings(col)(newi) : hspacings(col)(oldi);
hxnormupdate(Hx, bitstring, ind, bit - 1);
}
void Modulator_NRD::yxnormupdate(double& yx, itpp::QLLR& lapr, unsigned& bitstring, unsigned& ind, unsigned bit)
{
using namespace itpp;
const unsigned col = bpos2cpos[bit];
if(bit < 1) {
Qnorms[ind] = llrcalc.to_qllr((yx - hnorms[ind]) / gaussnorm) + lapr;
ind++;
unsigned oldi = gray2dec(col)[bitstring & (M[col] - 1)];
bitstring ^= 1;
unsigned newi = gray2dec(col)[bitstring & (M[col] - 1)];
yx += oldi > newi ? -yspacings(col)[newi] : yspacings(col)[oldi];
lapr += (bitstring & 1) ? -llrapr[bit] : llrapr[bit];
Qnorms[ind] = llrcalc.to_qllr((yx - hnorms[ind]) / gaussnorm) + lapr;
ind++;
return;
}
yxnormupdate(yx, lapr, bitstring, ind, bit - 1);
unsigned oldi = gray2dec(col)[(bitstring >> bitcumsum[col]) & (M[col] - 1)];
bitstring ^= 1 << bit;
unsigned newi = gray2dec(col)[(bitstring >> bitcumsum[col]) & (M[col] - 1)];
yx += oldi > newi ? -yspacings(col)[newi] : yspacings(col)[oldi];
lapr += ((bitstring >> bit) & 1) ? -llrapr[bit] : llrapr[bit];
yxnormupdate(yx, lapr, bitstring, ind, bit - 1);
}
std::ostream &operator<<(std::ostream &os, const Modulator_NRD &mod)
{
os << "--- REAL MIMO (NRD) CHANNEL ---------" << std::endl;
os << "Dimension (nt): " << mod.nt << std::endl;
os << "Bits per dimension (k): " << mod.k << std::endl;
os << "Symbols per dimension (M):" << mod.M << std::endl;
for(int i = 0; i < mod.nt; i++) {
os << "Bitmap for dimension " << i << ": " << mod.bitmap(i) << std::endl;
// skip printing the trailing zero
os << "Symbol coordinates for dimension " << i << ": " << mod.symbols(i).left(mod.M(i)) << std::endl;
}
os << mod.get_llrcalc() << std::endl;
return os;
}
// ----------------------------------------------------------------------
// Modulator_NCD
// ----------------------------------------------------------------------
Array<cvec> Modulator_NCD::get_symbols() const
{
Array<cvec> retvec(nt);
for(int i = 0; i < nt; ++i) {
it_assert(M.length() == symbols.length(), "Modulator_NRD::get_symbols(): "
"The length of M vector is different than length of the symbols vector.");
retvec(i) = symbols(i).left(M(i));
}
return retvec;
}
void Modulator_NCD::modulate_bits(const bvec &bits, cvec &out_symbols) const
{
it_assert(length(bits) == sum(k), "Modulator_NCD::modulate_bits(): "
"The number of input bits does not match.");
out_symbols.set_size(nt);
int b = 0;
for(int i = 0; i < nt; ++i) {
int symb = bin2dec(bits.mid(b, k(i)));
out_symbols(i) = symbols(i)(bits2symbols(i)(symb));
b += k(i);
}
}
cvec Modulator_NCD::modulate_bits(const bvec &bits) const
{
cvec result(nt);
modulate_bits(bits, result);
return result;
}
void Modulator_NCD::init_soft_demodulator(const itpp::cmat& H_in, const double& sigma2)
{
using namespace itpp;
it_assert_debug(H_in.cols() == nt, "The number of Tx antennas is wrong.\n");
it_assert_debug(sum(k) < 32, "Number of total bits per transmission can not be larger than 32.\n");
it_assert_debug(pow2i(sum(k)) == prod(M), "The modulater must use exhaustive constellations, i.e., #bits=log2(#symbs).\n");
H = H_in;
bitcumsum = reverse(cumsum(reverse(k)) - reverse(k)); // Shifted cummulative sum
nb = sum(k);
hnorms.set_size(1 << nb);
Qnorms.set_size(1 << nb);
hspacings.set_size(nt);
yspacings.set_size(nt);
bpos2cpos.set_size(nb);
gray2dec.set_size(nt);
gaussnorm = sigma2;
cvec startsymbvec(nt);
for(int ci = 0; ci < nt; ci++) startsymbvec[ci] = symbols(ci)[0];
cvec Hx = H * startsymbvec;
for(int ci = 0, bcs = 0; ci < nt; bcs += k[ci++]) {
for(int bi = 0; bi < k[ci]; bi++) bpos2cpos[bcs + bi] = ci;
gray2dec(ci).set_size(M[ci]);
for(int si = 0; si < M[ci]; si++) gray2dec(ci)[si ^(si >> 1)] = si;
yspacings(ci).set_size(M[ci] - 1);
hspacings(ci).set_size(M[ci] - 1);
for(int si = 0; si < M[ci] - 1; si++) {
std::complex<double> xspacing = symbols(ci)[bits2symbols(ci)[(si + 1) ^((si + 1) >> 1)]];
xspacing -= symbols(ci)[bits2symbols(ci)[si ^(si >> 1)]];
hspacings(ci)(si) = H.get_col(ci) * xspacing;
}
}
bpos2cpos = reverse(bpos2cpos);
unsigned bitstring = 0, ind = 0;
hxnormupdate(Hx, bitstring, ind, nb - 1);
demod_initialized = true;
}
void Modulator_NCD::demodulate_soft_bits(const itpp::cvec& y,
const itpp::QLLRvec& llr_apr,
itpp::QLLRvec& llr,
Soft_Demod_Method method)
{
using namespace itpp;
it_assert_debug(demod_initialized, "You have to first run init_soft_demodulator().\n");
it_assert_debug(H.rows() == y.length(), "The dimensions are not correct.\n");
it_assert_debug(llr_apr.length() == nb, "The LLR_apr length is not correct.\n");
// -- Prepare all the norms with the newly received vectory y
llr.set_size(nb);
llrapr = reverse(llr_apr); /* The bits are reversed due to the
norm-updating functions having the rightmost bit
as the least significant*/
cvec ytil = conj(H.H() * y);
cvec startsymbvec(nt);
for(int ci = 0; ci < nt; ci++) startsymbvec[ci] = symbols(ci)[0];
double yx = 2*(ytil * startsymbvec).real();
QLLR lapr = 0;
for(int bi = 0; bi < nb; lapr -= llrcalc.jaclog(0, -llrapr[bi++]));
for(int ci = 0; ci < nt; ci++) for(int si = 0; si < M[ci] - 1; si++) {
std::complex<double> xspacing = symbols(ci)[bits2symbols(ci)[(si + 1) ^((si + 1) >> 1)]];
xspacing -= symbols(ci)[bits2symbols(ci)[si ^(si >> 1)]];
yspacings(ci)[si] = 2*(ytil[ci] * xspacing).real();
}
unsigned bitstring = 0, ind = 0;
yxnormupdate(yx, lapr, bitstring, ind, nb - 1); // Recursive update of all the norms
marginalize_bits(llr,method);
llr=reverse(llr);
}
void Modulator_NCD::demodulate_soft_bits(const cvec &y, const cmat &H,
double sigma2,
const QLLRvec &LLR_apriori,
QLLRvec &LLR_aposteriori,
Soft_Demod_Method method)
{
switch(method) {
case ZF_LOGMAP: {
it_assert(H.rows() >= H.cols(), "Modulator_NCD::demodulate_soft_bits():"
" ZF demodulation impossible for undetermined systems");
// Set up the ZF detector
cmat Hht = H.H();
cmat inv_HhtH = inv(Hht * H);
cvec shat = inv_HhtH * Hht * y;
cvec h = ones_c(shat.size());
for(int i = 0; i < shat.size(); ++i) {
double sigma_zf = std::sqrt(real(inv_HhtH(i, i)) * sigma2);
shat(i) /= sigma_zf;
h(i) /= sigma_zf;
}
demodulate_soft_bits(shat, h, 1.0, zeros_i(sum(k)), LLR_aposteriori);
}
break;
default: {
init_soft_demodulator(H, sigma2);
demodulate_soft_bits(y, LLR_apriori, LLR_aposteriori, method);
}
}
}
QLLRvec Modulator_NCD::demodulate_soft_bits(const cvec &y, const cmat &H,
double sigma2,
const QLLRvec &LLR_apriori,
Soft_Demod_Method method)
{
QLLRvec result;
demodulate_soft_bits(y, H, sigma2, LLR_apriori, result, method);
return result;
}
void Modulator_NCD::demodulate_soft_bits(const cvec &y, const cvec &h,
double sigma2,
const QLLRvec &LLR_apriori,
QLLRvec &LLR_aposteriori)
{
it_assert(length(LLR_apriori) == sum(k),
"Modulator_NCD::demodulate_soft_bits(): Wrong sizes");
it_assert((length(h) == length(y)) && (length(h) == nt),
"Modulator_NCD::demodulate_soft_bits(): Wrong sizes");
// set size of the output vector
LLR_aposteriori.set_size(LLR_apriori.size());
// normalisation constant "minus one over sigma^2"
double moos2 = -1.0 / sigma2;
int b = 0;
for(int i = 0; i < nt; ++i) {
QLLRvec bnum = -QLLR_MAX * ones_i(k(i));
QLLRvec bdenom = -QLLR_MAX * ones_i(k(i));
Array<QLLRvec> logP_apriori = probabilities(LLR_apriori(b, b + k(i) - 1));
for(int j = 0; j < M(i); ++j) {
double norm2 = moos2 * sqr(y(i) - h(i) * symbols(i)(j));
QLLR scaled_norm = llrcalc.to_qllr(norm2);
update_LLR(logP_apriori, j, scaled_norm, i, bnum, bdenom);
}
LLR_aposteriori.set_subvector(b, bnum - bdenom);
b += k(i);
}
}
void Modulator_NCD::hxnormupdate(itpp::cvec& Hx, unsigned& bitstring, unsigned& ind, unsigned bit)
{
using namespace itpp;
const unsigned col = bpos2cpos[bit];
if(bit < 1) {
hnorms[ind++] = sqr(norm(Hx));
unsigned oldi = gray2dec(col)[bitstring & (M[col] - 1)];
bitstring ^= 1;
unsigned newi = gray2dec(col)[bitstring & (M[col] - 1)];
Hx += oldi > newi ? -hspacings(col)(newi) : hspacings(col)(oldi);
hnorms[ind++] = sqr(norm(Hx));
return;
}
hxnormupdate(Hx, bitstring, ind, bit - 1);
unsigned oldi = gray2dec(col)[(bitstring >> bitcumsum[col]) & (M[col] - 1)];
bitstring ^= 1 << bit;
unsigned newi = gray2dec(col)[(bitstring >> bitcumsum[col]) & (M[col] - 1)];
Hx += oldi > newi ? -hspacings(col)(newi) : hspacings(col)(oldi);
hxnormupdate(Hx, bitstring, ind, bit - 1);
}
void Modulator_NCD::yxnormupdate(double& yx, itpp::QLLR& lapr, unsigned& bitstring, unsigned& ind, unsigned bit)
{
using namespace itpp;
const unsigned col = bpos2cpos[bit];
if(bit < 1) {
Qnorms[ind] = llrcalc.to_qllr((yx - hnorms[ind]) / gaussnorm) + lapr;
//std::cerr << dec2bin(sum(k),(int)bitstring) << " " << Qnorms[ind] << " "
// << llrcalc.to_qllr((2*(rec.H()*H*modulate_bits(dec2bin(sum(k),(int)bitstring)))[0].real() - hnorms[ind]) / gaussnorm) + lapr << std::endl;
ind++;
unsigned oldi = gray2dec(col)[bitstring & (M[col] - 1)];
bitstring ^= 1;
unsigned newi = gray2dec(col)[bitstring & (M[col] - 1)];
yx += oldi > newi ? -yspacings(col)[newi] : yspacings(col)[oldi];
lapr += (bitstring & 1) ? -llrapr[bit] : llrapr[bit];
Qnorms[ind] = llrcalc.to_qllr((yx - hnorms[ind]) / gaussnorm) + lapr;
ind++;
return;
}
yxnormupdate(yx, lapr, bitstring, ind, bit - 1);
unsigned oldi = gray2dec(col)[(bitstring >> bitcumsum[col]) & (M[col] - 1)];
bitstring ^= 1 << bit;
unsigned newi = gray2dec(col)[(bitstring >> bitcumsum[col]) & (M[col] - 1)];
yx += oldi > newi ? -yspacings(col)[newi] : yspacings(col)[oldi];
lapr += ((bitstring >> bit) & 1) ? -llrapr[bit] : llrapr[bit];
yxnormupdate(yx, lapr, bitstring, ind, bit - 1);
}
std::ostream &operator<<(std::ostream &os, const Modulator_NCD &mod)
{
os << "--- COMPLEX MIMO (NCD) CHANNEL --------" << std::endl;
os << "Dimension (nt): " << mod.nt << std::endl;
os << "Bits per dimension (k): " << mod.k << std::endl;
os << "Symbols per dimension (M):" << mod.M << std::endl;
for(int i = 0; i < mod.nt; i++) {
os << "Bitmap for dimension " << i << ": "
<< mod.bitmap(i) << std::endl;
os << "Symbol coordinates for dimension " << i << ": "
<< mod.symbols(i).left(mod.M(i)) << std::endl;
}
os << mod.get_llrcalc() << std::endl;
return os;
}
// ----------------------------------------------------------------------
// ND_UPAM
// ----------------------------------------------------------------------
ND_UPAM::ND_UPAM(int nt, int Mary)
{
set_M(nt, Mary);
}
void ND_UPAM::set_M(int nt_in, int Mary)
{
nt = nt_in;
ivec Mary_temp(nt);
Mary_temp = Mary;
set_M(nt, Mary_temp);
}
void ND_UPAM::set_M(int nt_in, ivec Mary)
{
nt = nt_in;
it_assert(length(Mary) == nt, "ND_UPAM::set_M(): Mary has wrong length");
k.set_size(nt);
M = Mary;
bitmap.set_size(nt);
symbols.set_size(nt);
bits2symbols.set_size(nt);
spacing.set_size(nt);
for(int i = 0; i < nt; i++) {
k(i) = round_i(::log2(static_cast<double>(M(i))));
it_assert((k(i) > 0) && ((1 << k(i)) == M(i)),
"ND_UPAM::set_M(): M is not a power of 2.");
symbols(i).set_size(M(i) + 1);
bits2symbols(i).set_size(M(i));
bitmap(i) = graycode(k(i));
double average_energy = (M(i) * M(i) - 1) / 3.0;
double scaling_factor = std::sqrt(average_energy);
for(int j = 0; j < M(i); ++j) {
symbols(i)(j) = ((M(i) - 1) - j * 2) / scaling_factor;
bits2symbols(i)(bin2dec(bitmap(i).get_row(j))) = j;
}
// the "symbols" vector must end with a zero; only for a trick
// exploited in update_norm()
symbols(i)(M(i)) = 0.0;
spacing(i) = 2.0 / scaling_factor;
}
}
int ND_UPAM::sphere_search_SE(const vec &y_in, const mat &H,
const imat &zrange, double r, ivec &zhat)
{
// The implementation of this function basically follows the
// Schnorr-Eucner algorithm described in Agrell et al. (IEEE
// Trans. IT, 2002), but taking into account constellation
// boundaries, see the "accelerated sphere decoder" in Boutros et
// al. (IEEE Globecom, 2003). No lattice reduction is performed.
// Potentially the function can be speeded up by performing
// lattice reduction, but it seems difficult to keep track of
// constellation boundaries.
mat R = chol(H.transpose() * H);
mat Ri = inv(R);
mat Q = H * Ri;
vec y = Q.transpose() * y_in;
mat Vi = Ri.transpose();
int n = H.cols();
vec dist(n);
dist(n - 1) = 0;
double bestdist = r * r;
int status = -1; // search failed
mat E = zeros(n, n);
for(int i = 0; i < n; i++) { // E(k,:) = y*Vi;
for(int j = 0; j < n; j++) {
E(i * n + n - 1) += y(j) * Vi(j + n * i);
}
}
ivec z(n);
zhat.set_size(n);
z(n - 1) = floor_i(0.5 + E(n * n - 1));
z(n - 1) = std::max(z(n - 1), zrange(n - 1, 0));
z(n - 1) = std::min(z(n - 1), zrange(n - 1, 1));
double p = (E(n * n - 1) - z(n - 1)) / Vi(n * n - 1);
ivec step(n);
step(n - 1) = sign_nozero_i(p);
// Run search loop
int k = n - 1; // k uses natural indexing, goes from 0 to n-1
while(true) {
double newdist = dist(k) + p * p;
if((newdist < bestdist) && (k != 0)) {
for(int i = 0; i < k; i++) {
E(k - 1 + i * n) = E(k + i * n) - p * Vi(k + i * n);
}
k--;
dist(k) = newdist;
z(k) = floor_i(0.5 + E(k + k * n));
z(k) = std::max(z(k), zrange(k, 0));
z(k) = std::min(z(k), zrange(k, 1));
p = (E(k + k * n) - z(k)) / Vi(k + k * n);
step(k) = sign_nozero_i(p);
}
else {
while(true) {
if(newdist < bestdist) {
zhat = z;
bestdist = newdist;
status = 0;
}
else if(k == n - 1) {
goto exit_point;
}
else {
k++;
}
z(k) += step(k);
if((z(k) < zrange(k, 0)) || (z(k) > zrange(k, 1))) {
step(k) = (-step(k) - sign_nozero_i(step(k)));
z(k) += step(k);
}
if((z(k) >= zrange(k, 0)) && (z(k) <= zrange(k, 1))) {
break;
}
}
p = (E(k + k * n) - z(k)) / Vi(k + k * n);
step(k) = (-step(k) - sign_nozero_i(step(k)));
}
}
exit_point:
return status;
}
int ND_UPAM::sphere_decoding(const vec &y, const mat &H, double rstart,
double rmax, double stepup,
QLLRvec &detected_bits)
{
it_assert(H.rows() == length(y),
"ND_UPAM::sphere_decoding(): dimension mismatch");
it_assert(H.cols() == nt,
"ND_UPAM::sphere_decoding(): dimension mismatch");
it_assert(rstart > 0, "ND_UPAM::sphere_decoding(): radius error");
it_assert(rmax > rstart, "ND_UPAM::sphere_decoding(): radius error");
// This function can be improved, e.g., by using an ordered search.
vec ytemp = y;
mat Htemp(H.rows(), H.cols());
for(int i = 0; i < H.cols(); i++) {
Htemp.set_col(i, H.get_col(i)*spacing(i));
ytemp += Htemp.get_col(i) * 0.5 * (M(i) - 1.0);
}
imat crange(nt, 2);
for(int i = 0; i < nt; i++) {
crange(i, 0) = 0;
crange(i, 1) = M(i) - 1;
}
int status = 0;
double r = rstart;
ivec s(sum(M));
while(r <= rmax) {
status = sphere_search_SE(ytemp, Htemp, crange, r, s);
if(status == 0) { // search successful
detected_bits.set_size(sum(k));
int b = 0;
for(int j = 0; j < nt; j++) {
for(int i = 0; i < k(j); i++) {
if(bitmap(j)((M(j) - 1 - s[j]), i) == 0) {
detected_bits(b) = 1000;
}
else {
detected_bits(b) = -1000;
}
b++;
}
}
return status;
}
r = r * stepup;
}
return status;
}
// ----------------------------------------------------------------------
// ND_UQAM
// ----------------------------------------------------------------------
// The ND_UQAM (MIMO with uniform QAM) class could alternatively
// have been implemented by using a ND_UPAM class of twice the
// dimension, but this does not fit as elegantly into the class
// structure
ND_UQAM::ND_UQAM(int nt, int Mary)
{
set_M(nt, Mary);
}
void ND_UQAM::set_M(int nt_in, int Mary)
{
nt = nt_in;
ivec Mary_temp(nt);
Mary_temp = Mary;
set_M(nt, Mary_temp);
}
void ND_UQAM::set_M(int nt_in, ivec Mary)
{
nt = nt_in;
it_assert(length(Mary) == nt, "ND_UQAM::set_M(): Mary has wrong length");
k.set_size(nt);
M = Mary;
L.set_size(nt);
bitmap.set_size(nt);
symbols.set_size(nt);
bits2symbols.set_size(nt);
for(int i = 0; i < nt; ++i) {
k(i) = round_i(::log2(static_cast<double>(M(i))));
it_assert((k(i) > 0) && ((1 << k(i)) == M(i)),
"ND_UQAM::set_M(): M is not a power of 2");
L(i) = round_i(std::sqrt(static_cast<double>(M(i))));
it_assert(L(i)*L(i) == M(i), "ND_UQAM: constellation M must be square");
symbols(i).set_size(M(i) + 1);
bitmap(i).set_size(M(i), k(i));
bits2symbols(i).set_size(M(i));
double average_energy = (M(i) - 1) * 2.0 / 3.0;
double scaling_factor = std::sqrt(average_energy);
bmat gray_code = graycode(levels2bits(L(i)));
for(int j1 = 0; j1 < L(i); ++j1) {
for(int j2 = 0; j2 < L(i); ++j2) {
symbols(i)(j1 * L(i) + j2) =
std::complex<double>(((L(i) - 1) - j2 * 2.0) / scaling_factor,
((L(i) - 1) - j1 * 2.0) / scaling_factor);
bitmap(i).set_row(j1 * L(i) + j2, concat(gray_code.get_row(j1),
gray_code.get_row(j2)));
bits2symbols(i)(bin2dec(bitmap(i).get_row(j1 * L(i) + j2)))
= j1 * L(i) + j2;
}
}
// must end with a zero; only for a trick exploited in
// update_norm()
symbols(i)(M(i)) = 0.0;
}
}
void ND_UQAM::set_constellation_points(const int nth, const cvec& inConstellation, const ivec& in_bit2symbols)
{
it_assert(nt > nth, "ND_UQAM::set_constellation_points(): Number of input to change is out of the size");
it_assert(inConstellation.size() == in_bit2symbols.size(),
"ND_UQAM::set_constellation_points(): Number of constellation and bits2symbols does not match");
it_assert(is_even(inConstellation.size()) && (inConstellation.size() > 0),
"ND_UQAM::set_constellation_points(): Number of symbols needs to be even and non-zero");
symbols(nth).replace_mid(0, inConstellation);
bits2symbols(nth) = in_bit2symbols;
for(int m = 0; m < M(nth); ++m) {
bitmap(nth).set_row(bits2symbols(nth)(m), dec2bin(k(nth), m));
}
// must end with a zero; only for a trick exploited in
// update_norm()
symbols(nth)(M(nth)) = 0.0;
};
// ----------------------------------------------------------------------
// ND_UPSK
// ----------------------------------------------------------------------
ND_UPSK::ND_UPSK(int nt, int Mary)
{
set_M(nt, Mary);
}
void ND_UPSK::set_M(int nt_in, int Mary)
{
nt = nt_in;
ivec Mary_temp(nt);
Mary_temp = Mary;
set_M(nt, Mary_temp);
}
void ND_UPSK::set_M(int nt_in, ivec Mary)
{
nt = nt_in;
it_assert(length(Mary) == nt, "ND_UPSK::set_M() Mary has wrong length");
k.set_size(nt);
M = Mary;
bitmap.set_size(nt);
symbols.set_size(nt);
bits2symbols.set_size(nt);
for(int i = 0; i < nt; ++i) {
k(i) = round_i(::log2(static_cast<double>(M(i))));
it_assert((k(i) > 0) && ((1 << k(i)) == M(i)),
"ND_UPSK::set_M(): M is not a power of 2");
symbols(i).set_size(M(i) + 1);
bits2symbols(i).set_size(M(i));
bitmap(i) = graycode(k(i));
double delta = 2.0 * pi / M(i);
double epsilon = delta / 10000.0;
for(int j = 0; j < M(i); ++j) {
std::complex<double> symb
= std::complex<double>(std::polar(1.0, delta * j));
if(std::abs(std::real(symb)) < epsilon) {
symbols(i)(j) = std::complex<double>(0.0, std::imag(symb));
}
else if(std::abs(std::imag(symb)) < epsilon) {
symbols(i)(j) = std::complex<double>(std::real(symb), 0.0);
}
else {
symbols(i)(j) = symb;
}
bits2symbols(i)(bin2dec(bitmap(i).get_row(j))) = j;
}
// must end with a zero; only for a trick exploited in
// update_norm()
symbols(i)(M(i)) = 0.0;
}
}
} // namespace itpp
|