1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
|
/*!
* \file
* \brief Implementation of SISO modules for RSC codes
* \author Bogdan Cristea
*
* -------------------------------------------------------------------------
*
* Copyright (C) 1995-2010 (see AUTHORS file for a list of contributors)
*
* This file is part of IT++ - a C++ library of mathematical, signal
* processing, speech processing, and communications classes and functions.
*
* IT++ is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* IT++ is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along
* with IT++. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include <itpp/comm/siso.h>
#include <itpp/base/itcompat.h>
#include <limits>
#ifndef INFINITY
#define INFINITY std::numeric_limits<double>::infinity()
#endif
namespace itpp
{
void SISO::gen_rsctrellis(void)
//generates 1/2 RSC trellis structure for binary symbols
//the states are numbered from 0
{
int mem_len = gen.cols()-1;
int n,k,j;
itpp::bin feedback,out;
int buffer;
rsctrellis.numStates = (1<<mem_len);
rsctrellis.prevStates = new int[2*rsctrellis.numStates];
rsctrellis.nextStates = new int[2*rsctrellis.numStates];
rsctrellis.PARout = new double[2*rsctrellis.numStates];
rsctrellis.fm = new itpp::bin[rsctrellis.numStates];
itpp::bvec cases(mem_len);
for (n=0; n<2; n++)
{
#pragma omp parallel for private(k, j, cases, feedback, out, buffer)
for (k=0; k<rsctrellis.numStates; k++)
{
cases = itpp::dec2bin(mem_len, k);
//feedback
feedback = (itpp::bin)n;
for (j=1; j<(mem_len+1); j++)
{
feedback ^= (gen(0,j)*cases[j-1]);
}
//out
out = feedback*gen(1,0);
for (j=1; j<(mem_len+1); j++)
{
out ^= (gen(1,j)*cases[j-1]);
}
rsctrellis.PARout[k+n*rsctrellis.numStates] = (out?1.0:0.0);//parity bit
rsctrellis.fm[k] = itpp::bin(n)^out;
//shift
for (j=mem_len-1; j>0; j--)
{
cases[j] = cases[j-1];
}
cases[0] = feedback;
//next and previous state
buffer = itpp::bin2dec(cases, true);
rsctrellis.nextStates[k+n*rsctrellis.numStates] = buffer;//next state
rsctrellis.prevStates[buffer+n*rsctrellis.numStates] = k;//previous state
}
}
}
void SISO::rsc_logMAP(itpp::vec &extrinsic_coded, itpp::vec &extrinsic_data,
const itpp::vec &intrinsic_coded, const itpp::vec &apriori_data)
/*
logMAP (SISO) decoder for RSC of rate 1/2
extrinsic_coded - extrinsic information of coded bits
extrinsic_data - extrinsic information of data (informational) bits
intrinsic_coded - intrinsic information of coded (systematic and parity) bits
apriori_data - a priori information of data (informational) bits
Reference: Steven S. Pietrobon and Adrian S. Barbulescu, "A simplification of
the modified Bahl decoding algorithm for systematic convolutional codes", Proc. ISITA, 1994
*/
{
//get parameters
int N = apriori_data.length();
//other parameters
int n,k;
double buffer;
int index;
double A_min, A_max;
double sum0, sum1;
//trellis generation
gen_rsctrellis();
//parameter initialization
double* Lc1I = new double[N];
double* Lc2I = new double[N];
#pragma omp parallel for private(n)
for (n=0; n<N; n++)
{
Lc1I[n] = intrinsic_coded[2*n];
Lc2I[n] = intrinsic_coded[2*n+1];
}
double* A0 = new double[rsctrellis.numStates*N];
double* A1 = new double[rsctrellis.numStates*N];
double* A_mid = new double[N];
double* B0 = new double[rsctrellis.numStates*N];
double* B1 = new double[rsctrellis.numStates*N];
buffer = (tail?-INFINITY:0);//log(buffer)
#pragma omp parallel for private(n,k)
for (n=0; n<N; n++)
{
for (k=0; k<rsctrellis.numStates; k++)
{
A0[k+n*rsctrellis.numStates] = -INFINITY;
A1[k+n*rsctrellis.numStates] = -INFINITY;
B0[k+n*rsctrellis.numStates] = buffer;
B1[k+n*rsctrellis.numStates] = buffer;
}
A_mid[n] = 0;
}
//A
A0[0] = Lc2I[0]*rsctrellis.PARout[0];//i=0
A1[0] = Lc1I[0]+apriori_data[0]+Lc2I[0]*rsctrellis.PARout[rsctrellis.numStates];//i=1
for (n=1; n<N; n++)
{
A_min = INFINITY;
A_max = 0;
for (k=0; k<rsctrellis.numStates; k++)
{
buffer = itpp::log_add(A0[rsctrellis.prevStates[k]+(n-1)*rsctrellis.numStates],
A1[rsctrellis.prevStates[k+rsctrellis.numStates]+(n-1)*rsctrellis.numStates]);//log(alpha0+alpha1)
A0[k+rsctrellis.numStates*n] = Lc2I[n]*rsctrellis.PARout[k]+buffer;
A1[k+rsctrellis.numStates*n] = Lc1I[n]+apriori_data[n]+
Lc2I[n]*rsctrellis.PARout[k+rsctrellis.numStates]+buffer;
//find min A(:,n)
A_min = std::min(A_min, A0[k+rsctrellis.numStates*n]);
//find max A(:,n)
A_max = std::max(A_max, A0[k+rsctrellis.numStates*n]);
}
//normalization
A_mid[n] = (A_min+A_max)/2;
if (std::isinf(A_mid[n]))
{
continue;
}
for (k=0; k<rsctrellis.numStates; k++)
{
A0[k+rsctrellis.numStates*n] -= A_mid[n];
A1[k+rsctrellis.numStates*n] -= A_mid[n];
}
}
//B
B0[rsctrellis.prevStates[0]+(N-1)*rsctrellis.numStates] = 0;
B1[rsctrellis.prevStates[rsctrellis.numStates]+(N-1)*rsctrellis.numStates] = 0;
for (n=N-2; n>=0; n--)
{
for (k=0; k<rsctrellis.numStates; k++)
{
index = rsctrellis.nextStates[k];
B0[k+rsctrellis.numStates*n] = itpp::log_add(B0[index+(n+1)*rsctrellis.numStates]+
Lc2I[n+1]*rsctrellis.PARout[index],
B1[index+(n+1)*rsctrellis.numStates]+
Lc1I[n+1]+apriori_data[n+1]+Lc2I[n+1]*rsctrellis.PARout[index+rsctrellis.numStates]);
index = rsctrellis.nextStates[k+rsctrellis.numStates];
B1[k+rsctrellis.numStates*n] = itpp::log_add(B0[index+(n+1)*rsctrellis.numStates]+
Lc2I[n+1]*rsctrellis.PARout[index],
B1[index+(n+1)*rsctrellis.numStates]+
Lc1I[n+1]+apriori_data[n+1]+Lc2I[n+1]*rsctrellis.PARout[index+rsctrellis.numStates]);
}
if (std::isinf(A_mid[n+1]))
{
continue;
}
for (k=0; k<rsctrellis.numStates; k++)
{
B0[k+rsctrellis.numStates*n] -= A_mid[n+1];
B1[k+rsctrellis.numStates*n] -= A_mid[n+1];
}
}
//updated LLR for information bits
extrinsic_data.set_size(N);
extrinsic_coded.set_size(2*N);
#pragma omp parallel for private(n, k, sum0, sum1)
for (n=0; n<N; n++)
{
sum0 = 0;
sum1 = 0;
for (k=0; k<rsctrellis.numStates; k++)
{
sum1 += std::exp(A1[k+n*rsctrellis.numStates]+B1[k+n*rsctrellis.numStates]);
sum0 += std::exp(A0[k+n*rsctrellis.numStates]+B0[k+n*rsctrellis.numStates]);
}
extrinsic_data[n] = std::log(sum1/sum0)-apriori_data[n];//updated information must be independent of input LLR
extrinsic_coded[2*n] = std::log(sum1/sum0)-Lc1I[n];//this information is used in serial concatenations
}
//updated LLR for coded (parity) bits
#pragma omp parallel for private(n, k, sum0, sum1)
for (n=0; n<N; n++)
{
sum0 = 0;
sum1 = 0;
for (k=0; k<rsctrellis.numStates; k++)
{
if (rsctrellis.fm[k])
{
sum1 += std::exp(A1[k+n*rsctrellis.numStates]+B1[k+n*rsctrellis.numStates]);
sum0 += std::exp(A0[k+n*rsctrellis.numStates]+B0[k+n*rsctrellis.numStates]);
}
else
{
sum0 += std::exp(A1[k+n*rsctrellis.numStates]+B1[k+n*rsctrellis.numStates]);
sum1 += std::exp(A0[k+n*rsctrellis.numStates]+B0[k+n*rsctrellis.numStates]);
}
}
extrinsic_coded[2*n+1] = std::log(sum0/sum1)-Lc2I[n];//updated information must be independent of input LLR
}
//destroy trellis
delete[] rsctrellis.prevStates;
delete[] rsctrellis.nextStates;
delete[] rsctrellis.PARout;
delete[] rsctrellis.fm;
//destroy MAP parameters
delete[] Lc1I;
delete[] Lc2I;
delete[] A0;
delete[] A1;
delete[] A_mid;
delete[] B0;
delete[] B1;
}
void SISO::rsc_maxlogMAP(itpp::vec &extrinsic_coded, itpp::vec &extrinsic_data,
const itpp::vec &intrinsic_coded, const itpp::vec &apriori_data)
/*
maxlogMAP (SISO) decoder for RSC of rate 1/2
extrinsic_coded - extrinsic information of coded bits
extrinsic_data - extrinsic information of data (informational) bits
intrinsic_coded - intrinsic information of coded (systematic and parity) bits
apriori_data - a priori information of data (informational) bits
Reference: Steven S. Pietrobon and Adrian S. Barbulescu, "A simplification of
the modified Bahl decoding algorithm for systematic convolutional codes", Proc. ISITA, 1994
*/
{
//get parameters
int N = apriori_data.length();
//other parameters
int n,k;
double buffer;
int index;
double A_min, A_max;
double sum0, sum1;
//trellis generation
gen_rsctrellis();
//parameter initialization
double* Lc1I = new double[N];
double* Lc2I = new double[N];
#pragma omp parallel for private(n)
for (n=0; n<N; n++)
{
Lc1I[n] = intrinsic_coded[2*n];
Lc2I[n] = intrinsic_coded[2*n+1];
}
double* A0 = new double[rsctrellis.numStates*N];
double* A1 = new double[rsctrellis.numStates*N];
double* A_mid = new double[N];
double* B0 = new double[rsctrellis.numStates*N];
double* B1 = new double[rsctrellis.numStates*N];
buffer = (tail?-INFINITY:0);//log(buffer)
#pragma omp parallel for private(n,k)
for (n=0; n<N; n++)
{
for (k=0; k<rsctrellis.numStates; k++)
{
A0[k+n*rsctrellis.numStates] = -INFINITY;
A1[k+n*rsctrellis.numStates] = -INFINITY;
B0[k+n*rsctrellis.numStates] = buffer;
B1[k+n*rsctrellis.numStates] = buffer;
}
A_mid[n] = 0;
}
//A
A0[0] = Lc2I[0]*rsctrellis.PARout[0];//i=0
A1[0] = Lc1I[0]+apriori_data[0]+Lc2I[0]*rsctrellis.PARout[rsctrellis.numStates];//i=1
for (n=1; n<N; n++)
{
A_min = INFINITY;
A_max = 0;
for (k=0; k<rsctrellis.numStates; k++)
{
buffer = std::max(A0[rsctrellis.prevStates[k]+(n-1)*rsctrellis.numStates],
A1[rsctrellis.prevStates[k+rsctrellis.numStates]+(n-1)*rsctrellis.numStates]);//log(alpha0+alpha1)
A0[k+rsctrellis.numStates*n] = Lc2I[n]*rsctrellis.PARout[k]+buffer;
A1[k+rsctrellis.numStates*n] = Lc1I[n]+apriori_data[n]+
Lc2I[n]*rsctrellis.PARout[k+rsctrellis.numStates]+buffer;
//find min A(:,n)
A_min = std::min(A_min, A0[k+rsctrellis.numStates*n]);
//find max A(:,n)
A_max = std::max(A_max, A0[k+rsctrellis.numStates*n]);
}
//normalization
A_mid[n] = (A_min+A_max)/2;
if (std::isinf(A_mid[n]))
continue;
for (k=0; k<rsctrellis.numStates; k++)
{
A0[k+rsctrellis.numStates*n] -= A_mid[n];
A1[k+rsctrellis.numStates*n] -= A_mid[n];
}
}
//B
B0[rsctrellis.prevStates[0]+(N-1)*rsctrellis.numStates] = 0;
B1[rsctrellis.prevStates[rsctrellis.numStates]+(N-1)*rsctrellis.numStates] = 0;
for (n=N-2; n>=0; n--)
{
for (k=0; k<rsctrellis.numStates; k++)
{
index = rsctrellis.nextStates[k];
B0[k+rsctrellis.numStates*n] = std::max(B0[index+(n+1)*rsctrellis.numStates]+
Lc2I[n+1]*rsctrellis.PARout[index],
B1[index+(n+1)*rsctrellis.numStates]+
Lc1I[n+1]+apriori_data[n+1]+Lc2I[n+1]*rsctrellis.PARout[index+rsctrellis.numStates]);
index = rsctrellis.nextStates[k+rsctrellis.numStates];
B1[k+rsctrellis.numStates*n] = std::max(B0[index+(n+1)*rsctrellis.numStates]+
Lc2I[n+1]*rsctrellis.PARout[index],
B1[index+(n+1)*rsctrellis.numStates]+
Lc1I[n+1]+apriori_data[n+1]+Lc2I[n+1]*rsctrellis.PARout[index+rsctrellis.numStates]);
}
if (std::isinf(A_mid[n+1]))
continue;
for (k=0; k<rsctrellis.numStates; k++)
{
B0[k+rsctrellis.numStates*n] -= A_mid[n+1];
B1[k+rsctrellis.numStates*n] -= A_mid[n+1];
}
}
//updated LLR for information bits
extrinsic_data.set_size(N);
extrinsic_coded.set_size(2*N);
#pragma omp parallel for private(n, k, sum0, sum1)
for (n=0; n<N; n++)
{
sum0 = -INFINITY;
sum1 = -INFINITY;
for (k=0; k<rsctrellis.numStates; k++)
{
sum1 = std::max(sum1, A1[k+n*rsctrellis.numStates]+B1[k+n*rsctrellis.numStates]);
sum0 = std::max(sum0, A0[k+n*rsctrellis.numStates]+B0[k+n*rsctrellis.numStates]);
}
extrinsic_data[n] = (sum1-sum0)-apriori_data[n];//updated information must be independent of input LLR
extrinsic_coded[2*n] = (sum1-sum0)-Lc1I[n];
}
//updated LLR for coded (parity) bits
#pragma omp parallel for private(n, k, sum0, sum1)
for (n=0; n<N; n++)
{
sum0 = -INFINITY;
sum1 = -INFINITY;
for (k=0; k<rsctrellis.numStates; k++)
{
if (rsctrellis.fm[k])
{
sum1 = std::max(sum1, A1[k+n*rsctrellis.numStates]+B1[k+n*rsctrellis.numStates]);
sum0 = std::max(sum0, A0[k+n*rsctrellis.numStates]+B0[k+n*rsctrellis.numStates]);
}
else
{
sum0 = std::max(sum0, A1[k+n*rsctrellis.numStates]+B1[k+n*rsctrellis.numStates]);
sum1 = std::max(sum1, A0[k+n*rsctrellis.numStates]+B0[k+n*rsctrellis.numStates]);
}
}
extrinsic_coded[2*n+1] = (sum0-sum1)-Lc2I[n];//updated information must be independent of input LLR
}
//destroy trellis
delete[] rsctrellis.prevStates;
delete[] rsctrellis.nextStates;
delete[] rsctrellis.PARout;
delete[] rsctrellis.fm;
//destroy MAP parameters
delete[] Lc1I;
delete[] Lc2I;
delete[] A0;
delete[] A1;
delete[] A_mid;
delete[] B0;
delete[] B1;
}
void SISO::rsc_sova(itpp::vec &extrinsic_data, const itpp::vec &intrinsic_coded,
const itpp::vec &apriori_data, const int &win_len)
/* Soft Output Viterbi Algorithm (SOVA) optimized for 1/N encoders
* Output: extrinsic_data - extrinsic information of data bits
* Inputs: intrinsic_coded - intrinsic information of data bits
* apriori_data - a priori information of data bits
* win_len - window length used to represent the code trellis
*
* The original version has been written by Adrian Bohdanowicz (2003).
* It is assumed that the BPSK mapping is: 0 -> +1, 1 -> -1.
* Changes have been made to adapt the code for RSC codes of rate 1/2
* and for soft input informations.
* Improved SOVA has been implemented using a scaling factor and threshold for
* the reliability information (see Wang [2003]). Even so, PCCC performance
* are close to the original SOVA.
*/
{
//number of code outputs
int nb_outputs = gen.rows();
//setup internal variables based on RSC trellis
int i,j,s;
gen_rsctrellis();//trellis generation for 1/2 RSC codes
int nb_states = rsctrellis.numStates;
itpp::Array<itpp::mat> bin_out(2);//contains code output for each initial state and code input
itpp::imat next_state(nb_states,2);//next state in the trellis
for (i=0; i<2; i++)
{
bin_out(i).set_size(nb_states, nb_outputs);
for (j=0; j<nb_states; j++)
{
bin_out(i)(j,0) = double(i);//systematic bit
bin_out(i)(j,1) = rsctrellis.PARout[j+i*nb_states];//parity bit
next_state(j,i) = rsctrellis.nextStates[j+i*nb_states];
}
}
itpp::vec bin_inp("0 1");//binary code inputs
int len = apriori_data.length();//number of decoding steps (total)
//allocate memory for the trellis window
itpp::mat metr(nb_states,win_len+1);//path metric buffer
metr.zeros();
metr += -INFINITY;
metr(0,0) = 0;//initial state => (0,0)
itpp::mat surv(nb_states,win_len+1);//survivor state buffer
surv.zeros();
itpp::mat inpt(nb_states,win_len+1);//survivor input buffer (dec. output)
inpt.zeros();
itpp::mat diff(nb_states,win_len+1);//path metric difference
diff.zeros();
itpp::mat comp(nb_states,win_len+1);//competitor state buffer
comp.zeros();
itpp::mat inpc(nb_states,win_len+1);//competitor input buffer
inpc.zeros();
//soft output (sign with reliability)
itpp::vec sft(len);
sft.zeros();
sft += INFINITY;
//decode all the bits
int Cur,Nxt,nxt,sur,b,tmp,idx;
itpp::vec buf(nb_outputs);
double llb,mtr,dif,cmp,inc,srv,inp;
itpp::vec bin(nb_outputs);
itpp::ivec cyclic_buffer(win_len);
extrinsic_data.set_size(len);
for (i = 0; i < len; i++)
{
//indices + precalculations
Cur = i%(win_len+1);//curr trellis (cycl. buf) position
Nxt = (i+1)%(win_len+1);//next trellis (cycl. buf) position
buf = intrinsic_coded(i*nb_outputs,(i+1)*nb_outputs-1);//intrinsic_info portion to be processed
llb = apriori_data(i);//SOVA: apriori_info portion to be processed
metr.set_col(Nxt, -INFINITY*itpp::ones(nb_states));
//forward recursion
for (s = 0; s<nb_states; s++)
{
for (j = 0; j<2; j++)
{
nxt = next_state(s,j);//state after transition
bin = bin_out(j).get_row(s);//transition output (encoder)
mtr = bin*buf+metr(s,Cur);//transition metric
mtr += bin_inp(j)*llb;//SOVA
if (metr(nxt,Nxt) < mtr)
{
diff(nxt,Nxt) = mtr-metr(nxt,Nxt);//SOVA
comp(nxt,Nxt) = surv(nxt,Nxt);//SOVA
inpc(nxt,Nxt) = inpt(nxt,Nxt);//SOVA
metr(nxt,Nxt) = mtr;//store the metric
surv(nxt,Nxt) = s;//store the survival state
inpt(nxt,Nxt) = j;//store the survival input
}
else
{
dif = metr(nxt,Nxt)-mtr;
if (dif <= diff(nxt,Nxt))
{
diff(nxt,Nxt) = dif;//SOVA
comp(nxt,Nxt) = s;//SOVA
inpc(nxt,Nxt) = j;//SOVA
}
}
}
}
//trace backwards
if (i < (win_len-1))
{
continue;
}//proceed if the buffer has been filled
mtr = itpp::max(metr.get_col(Nxt), sur);//find the initial state (max metric)
b = i;//temporary bit index
for (j=0; j<win_len; j++)//indices in a 'cyclic buffer' operation
{
cyclic_buffer(j) = (Nxt-j)%(win_len+1);
cyclic_buffer(j) = (cyclic_buffer(j)<0)?(cyclic_buffer(j)+win_len+1):cyclic_buffer(j);
}
for (j=0; j<win_len; j++)//for all the bits in the buffer
{
inp = inpt(sur,cyclic_buffer(j));//current bit-decoder output (encoder input)
extrinsic_data(b) = inp;//store the hard output
tmp = cyclic_buffer(j);
cmp = comp(sur, tmp);//SOVA: competitor state (previous)
inc = inpc(sur, tmp);//SOVA: competitor bit output
dif = diff(sur, tmp);//SOVA: corresp. path metric difference
srv = surv(sur, tmp);//SOVA: temporary survivor path state
for (s=j+1; s<=win_len; s++)//check all buffer bits srv and cmp paths
{
if (inp != inc)
{
idx = b-((s-1)-j);//calculate index: [enc.k*(b-(k-1)+j-1)+1:enc.k*(b-(k-1)+j)]
sft(idx) = std::min(sft(idx), dif);//update LLRs for bits that are different
}
if (srv == cmp)
{
break;
}//stop if surv and comp merge (no need to continue)
if (s == win_len)
{
break;
}//stop if the end (otherwise: error)
tmp = cyclic_buffer(s);
inp = inpt(int(srv), tmp);//previous surv bit
inc = inpt(int(cmp), tmp);//previous comp bit
srv = surv(int(srv), tmp);//previous surv state
cmp = surv(int(cmp), tmp);//previous comp state
}
sur = int(surv(sur, cyclic_buffer(j)));//state for the previous surv bit
b--;//update bit index
}
}
// provide soft output with +/- sign:
sft = threshold(sft, SOVA_threshold);
extrinsic_data =
itpp::elem_mult((2.0*extrinsic_data-1.0), SOVA_scaling_factor*sft)-apriori_data;
//free trellis memory
delete[] rsctrellis.prevStates;
delete[] rsctrellis.nextStates;
delete[] rsctrellis.PARout;
delete[] rsctrellis.fm;
}
void SISO::rsc_viterbi(itpp::vec &extrinsic_coded, itpp::vec &extrinsic_data,
const itpp::vec &intrinsic_coded, const itpp::vec &apriori_data, const int &win_len)
/* Soft Input Soft Output module based on Viterbi algorithm
* Output: extrinsic_data - extrinsic information of data bits
* Inputs: intrinsic_coded - intrinsic information of data bits
* apriori_data - a priori information of data bits
* win_len - window length used to represent the code trellis
*
* The implemented algorithm follows M. Kerner and O. Amrani, ''Iterative Decoding
* Using Optimum Soft Input - Hard Output Module`` (2009), in:
* IEEE Transactions on Communications, 57:7(1881-1885)
*/
{
//number of code outputs
int nb_outputs = gen.rows();
//setup internal variables based on RSC trellis
int i,j,s;
gen_rsctrellis();//trellis generation for 1/2 RSC codes
int nb_states = rsctrellis.numStates;
itpp::Array<itpp::mat> bin_out(2);//contains code output for each initial state and code input
itpp::imat next_state(nb_states,2);//next state in the trellis
for (i=0; i<2; i++)
{
bin_out(i).set_size(nb_states, nb_outputs);
for (j=0; j<nb_states; j++)
{
bin_out(i)(j,0) = double(i);//systematic bit
bin_out(i)(j,1) = rsctrellis.PARout[j+i*nb_states];//parity bit
next_state(j,i) = rsctrellis.nextStates[j+i*nb_states];
}
}
itpp::vec bin_inp("0 1");//binary code inputs
int len = apriori_data.length();//number of decoding steps (total)
//allocate memory for the trellis window
itpp::mat metr(nb_states,win_len+1);//path metric buffer
metr.zeros();
metr += -INFINITY;
metr(0,0) = 0;//initial state => (0,0)
itpp::mat surv(nb_states,win_len+1);//survivor state buffer
surv.zeros();
itpp::mat inpt(nb_states,win_len+1);//survivor input bits buffer (dec. output)
inpt.zeros();
itpp::mat parity(nb_states,win_len+1);//survivor parity bits buffer (dec. output)
parity.zeros();
//decode all the bits
int Cur,Nxt,nxt,sur,b;
itpp::vec buf(nb_outputs);
double llb,mtr;
itpp::vec bin(nb_outputs);
itpp::ivec cyclic_buffer(win_len);
extrinsic_coded.set_size(2*len);//initialize memory for output
extrinsic_data.set_size(len);
for (i = 0; i < len; i++)
{
//indices + precalculations
Cur = i%(win_len+1);//curr trellis (cycl. buf) position
Nxt = (i+1)%(win_len+1);//next trellis (cycl. buf) position
buf = intrinsic_coded(i*nb_outputs,(i+1)*nb_outputs-1);//intrinsic_info portion to be processed
llb = apriori_data(i);//SOVA: apriori_info portion to be processed
metr.set_col(Nxt, -INFINITY*itpp::ones(nb_states));
//forward recursion
for (s = 0; s<nb_states; s++)
{
for (j = 0; j<2; j++)
{
nxt = next_state(s,j);//state after transition
bin = bin_out(j).get_row(s);//transition output (encoder)
mtr = bin*buf+metr(s,Cur);//transition metric
mtr += bin_inp(j)*llb;//add a priori info contribution
if (metr(nxt,Nxt) < mtr)
{
metr(nxt,Nxt) = mtr;//store the metric
surv(nxt,Nxt) = s;//store the survival state
inpt(nxt,Nxt) = bin(0);//j;//store the survival input
parity(nxt,Nxt) = bin(1);//store survival parity bit
}
}
}
//trace backwards
if (i < (win_len-1))
{
continue;
}//proceed if the buffer has been filled
mtr = itpp::max(metr.get_col(Nxt), sur);//find the initial state (max metric)
b = i;//temporary bit index
for (j=0; j<win_len; j++)//indices in a 'cyclic buffer' operation
{
cyclic_buffer(j) = (Nxt-j)%(win_len+1);
cyclic_buffer(j) = (cyclic_buffer(j)<0)?(cyclic_buffer(j)+win_len+1):cyclic_buffer(j);
}
for (j=0; j<win_len; j++)//for all the bits in the buffer
{
extrinsic_data(b) = inpt(sur,cyclic_buffer(j));//current bit-decoder output (encoder input)
extrinsic_coded(2*b) = extrinsic_data(b);
extrinsic_coded(2*b+1) = parity(sur,cyclic_buffer(j));
sur = int(surv(sur, cyclic_buffer(j)));//state for the previous surv bit
b--;//update bit index
}
}
//free trellis memory
delete[] rsctrellis.prevStates;
delete[] rsctrellis.nextStates;
delete[] rsctrellis.PARout;
delete[] rsctrellis.fm;
//output only the hard output if the flag is true
if (Viterbi_hard_output_flag==true)
{
return;
}
// provide soft output (extrinsic information) for data bits
//compute flipped and non-flipped bits positions
itpp::bvec tmp(len);
for (i=0; i<len; i++)
{
tmp(i) = ((apriori_data(i)+intrinsic_coded(2*i))>=0)^(extrinsic_data(i)==1.0);
}
itpp::ivec *ptr_idx_matching = new itpp::ivec;
itpp::ivec *ptr_idx_nonmatching = new itpp::ivec;
*ptr_idx_matching = itpp::find(tmp==itpp::bin(0));
*ptr_idx_nonmatching = itpp::find(tmp==itpp::bin(1));
//Estimated Bit Error Rate
int idx_nonmatching_len = ptr_idx_nonmatching->length();
double error_rate = double(idx_nonmatching_len)/double(len);
//Logarithm of Likelihood Ratio
double LLR;
if (error_rate==0.0)
{
LLR = std::log(double(len));
} else if (error_rate==1.0)
{
LLR = -std::log(double(len));
} else
{
LLR = std::log((1.0-error_rate)/error_rate);
}
for (i=0; i<ptr_idx_matching->length(); i++)
{
extrinsic_data(ptr_idx_matching->get(i)) = Viterbi_scaling_factor[0]*
(2.0*extrinsic_data(ptr_idx_matching->get(i))-1.0)*LLR;
}
for (i=0; i<idx_nonmatching_len; i++)
{
extrinsic_data(ptr_idx_nonmatching->get(i)) = Viterbi_scaling_factor[1]*
(2.0*extrinsic_data(ptr_idx_nonmatching->get(i))-1.0)*LLR;
}
//extrinsic information
extrinsic_data -= apriori_data;
//provide soft output for coded bits
tmp.set_length(2*len);
for (i=0; i<(2*len); i++)
{
tmp(i) = (intrinsic_coded(i)>=0)^(extrinsic_coded(i)==1.0);
}
delete ptr_idx_matching;//free old memory
delete ptr_idx_nonmatching;
ptr_idx_matching = new itpp::ivec;//allocate memory for new vectors
ptr_idx_nonmatching = new itpp::ivec;
*ptr_idx_matching = itpp::find(tmp==itpp::bin(0));
*ptr_idx_nonmatching = itpp::find(tmp==itpp::bin(1));
//Estimated Bit Error Rate
idx_nonmatching_len = ptr_idx_nonmatching->length();
error_rate = double(idx_nonmatching_len)/double(2*len);
//Logarithm of Likelihood Ratio
if (error_rate==0.0)
{
LLR = std::log(double(2*len));
} else if (error_rate==1.0)
{
LLR = -std::log(double(2*len));
} else
{
LLR = std::log((1.0-error_rate)/error_rate);
}
for (i=0; i<ptr_idx_matching->length(); i++)
{
extrinsic_coded(ptr_idx_matching->get(i)) = Viterbi_scaling_factor[0]*
(2.0*extrinsic_coded(ptr_idx_matching->get(i))-1.0)*LLR;
}
for (i=0; i<idx_nonmatching_len; i++)
{
extrinsic_coded(ptr_idx_nonmatching->get(i)) = Viterbi_scaling_factor[1]*
(2.0*extrinsic_coded(ptr_idx_nonmatching->get(i))-1.0)*LLR;
}
delete ptr_idx_matching;
delete ptr_idx_nonmatching;
//extrinsic information
extrinsic_coded -= intrinsic_coded;
}
}
|