File: turbo.cpp

package info (click to toggle)
libitpp 4.3.1-14
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 9,952 kB
  • sloc: cpp: 73,628; makefile: 661; python: 548; sh: 261
file content (1190 lines) | stat: -rw-r--r-- 38,988 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
/*!
 * \file
 * \brief Implementation of a turbo encoder/decoder class
 * \author Pal Frenger. QLLR support by Erik G. Larsson.
 *
 * -------------------------------------------------------------------------
 *
 * Copyright (C) 1995-2010  (see AUTHORS file for a list of contributors)
 *
 * This file is part of IT++ - a C++ library of mathematical, signal
 * processing, speech processing, and communications classes and functions.
 *
 * IT++ is free software: you can redistribute it and/or modify it under the
 * terms of the GNU General Public License as published by the Free Software
 * Foundation, either version 3 of the License, or (at your option) any
 * later version.
 *
 * IT++ is distributed in the hope that it will be useful, but WITHOUT ANY
 * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along
 * with IT++.  If not, see <http://www.gnu.org/licenses/>.
 *
 * -------------------------------------------------------------------------
 */

#include <itpp/comm/turbo.h>


namespace itpp
{
// -------------------------------------------------------------------------------------
// Turbo Codec
// -------------------------------------------------------------------------------------
std::string Turbo_Codec::string_from_metric(const Turbo_Codec::Metric& in_metric)
{
  if(in_metric == Metric::LOGMAX) {
    return std::string("LOGMAX");
  }
  else if(in_metric == Metric::LOGMAP) {
    return std::string("LOGMAP");
  }
  else if(in_metric == Metric::MAP) {
    return std::string("MAP");
  }
  else if(in_metric == Metric::TABLE) {
    return std::string("TABLE");
  }
  else {
    return std::string("UNKNOWN");
  }
}
void Turbo_Codec::set_parameters(ivec gen1, ivec gen2, int constraint_length, const ivec &interleaver_sequence,
                                 int in_iterations, const std::string &in_metric, double in_logmax_scale_factor,
                                 bool in_adaptive_stop,  LLR_calc_unit in_llrcalc)
{
  //Set the input parameters:
  iterations          = in_iterations;
  interleaver_size    = interleaver_sequence.size();
  Nuncoded            = interleaver_size;
  logmax_scale_factor = in_logmax_scale_factor;
  adaptive_stop       = in_adaptive_stop;

  //Check the decoding metric
  if(in_metric == "LOGMAX") {
    metric = Metric::LOGMAX;
  }
  else if(in_metric == "LOGMAP") {
    metric = Metric::LOGMAP;
  }
  else if(in_metric == "MAP") {
    metric = Metric::MAP;
  }
  else if(in_metric == "TABLE") {
    metric = Metric::TABLE;
  }
  else {
    it_error("Turbo_Codec::set_parameters: The decoder metric must be either MAP, LOGMAP, LOGMAX or TABLE");
  }

  if(logmax_scale_factor != 1.0) {
    it_assert(metric == Metric::LOGMAX, "Turbo_Codec::set_parameters: logmax_scale_factor can only be used together with LOGMAX decoding");
  }

  //The RSC Encoders:
  rscc1.set_generator_polynomials(gen1, constraint_length);
  rscc2.set_generator_polynomials(gen2, constraint_length);
  n1 = gen1.length() - 1; //Number of parity bits from rscc1
  n2 = gen2.length() - 1; //Number of parity bits from rscc2
  n_tot = 1 + n1 + n2;  //Total number of parity bits and systematic bits

  //Set the number of tail bits:
  m_tail = constraint_length - 1;

  //Calculate the number of coded bits per code-block:
  Ncoded = Nuncoded * n_tot + m_tail * (1 + n1) + m_tail * (1 + n2);

  //Set the interleaver sequence
  bit_interleaver.set_interleaver_depth(interleaver_size);
  float_interleaver.set_interleaver_depth(interleaver_size);
  bit_interleaver.set_interleaver_sequence(interleaver_sequence);
  float_interleaver.set_interleaver_sequence(interleaver_sequence);

  //Default value of the channel reliability scaling factor is 1
  Lc = 1.0;

  // LLR algebra table
  rscc1.set_llrcalc(in_llrcalc);
  rscc2.set_llrcalc(in_llrcalc);

}

void Turbo_Codec::set_interleaver(const ivec &interleaver_sequence)
{
  interleaver_size = interleaver_sequence.size();
  Nuncoded = interleaver_size;

  //Calculate the number of coded bits per code-block:
  Ncoded = Nuncoded * n_tot + m_tail * (1 + n1) + m_tail * (1 + n2);

  //Set the interleaver sequence
  bit_interleaver.set_interleaver_depth(interleaver_size);
  float_interleaver.set_interleaver_depth(interleaver_size);
  bit_interleaver.set_interleaver_sequence(interleaver_sequence);
  float_interleaver.set_interleaver_sequence(interleaver_sequence);
}

void Turbo_Codec::set_metric(std::string in_metric, double in_logmax_scale_factor, LLR_calc_unit in_llrcalc)
{
  logmax_scale_factor = in_logmax_scale_factor;

  //Check the decoding metric
  if(in_metric == "LOGMAX") {
    metric = Metric::LOGMAX;
  }
  else if(in_metric == "LOGMAP") {
    metric = Metric::LOGMAP;
  }
  else if(in_metric == "MAP") {
    metric = Metric::MAP;
  }
  else if(in_metric == "TABLE") {
    metric = Metric::TABLE;
  }
  else {
    it_error("Turbo_Codec::set_metric: The decoder metric must be either MAP, LOGMAP, LOGMAX or TABLE");
  }

  rscc1.set_llrcalc(in_llrcalc);
  rscc2.set_llrcalc(in_llrcalc);
}

void Turbo_Codec::set_iterations(int in_iterations)
{
  iterations = in_iterations;
}

void Turbo_Codec::set_adaptive_stop(bool in_adaptive_stop)
{
  adaptive_stop = in_adaptive_stop;
}

void Turbo_Codec::set_awgn_channel_parameters(double in_Ec, double in_N0)
{
  Ec = in_Ec;
  N0 = in_N0;
  Lc = 4.0 * std::sqrt(Ec) / N0;
}

void Turbo_Codec::set_scaling_factor(double in_Lc)
{
  Lc = in_Lc;
}


void Turbo_Codec::encode(const bvec &input, bvec &output)
{
  //Local variables:
  int i, k, j, no_blocks;
  int count;
  bvec input_bits, in1, in2, tail1, tail2, out;
  bmat parity1, parity2;

  //Initializations:
  no_blocks = input.length() / Nuncoded;
  output.set_size(no_blocks * Ncoded, false);

  //Set the bit counter to zero:
  count = 0;

  //Encode all code blocks:
  for(i = 0; i < no_blocks; i++) {

    //Encode one block
    input_bits = input.mid(i * Nuncoded, Nuncoded);
    encode_block(input_bits, in1, in2, parity1, parity2);

    //The data part:
    for(k = 0; k < Nuncoded; k++) {
      output(count) = in1(k);
      count++;                                //Systematic bits
      for(j = 0; j < n1; j++) { output(count) = parity1(k, j); count++; }  //Parity-1 bits
      for(j = 0; j < n2; j++) { output(count) = parity2(k, j); count++; }  //Parity-2 bits
    }

    //The first tail:
    for(k = 0; k < m_tail; k++) {
      output(count) = in1(Nuncoded + k);
      count++;                                //First systematic tail bit
      for(j = 0; j < n1; j++) { output(count) = parity1(Nuncoded + k, j); count++; }  //Parity-1 tail bits
    }

    //The second tail:
    for(k = 0; k < m_tail; k++) {
      output(count) = in2(Nuncoded + k);
      count++;                                //Second systematic tail bit
      for(j = 0; j < n2; j++) { output(count) = parity2(Nuncoded + k, j); count++; }  //Parity-2 tail bits
    }

  }

}

void Turbo_Codec::decode(const vec &received_signal, bvec &decoded_bits, const bvec &true_bits)
{
  ivec nrof_used_iterations;
  decode(received_signal, decoded_bits, nrof_used_iterations, true_bits);
}

void Turbo_Codec::decode(const vec &received_signal, bvec &decoded_bits, ivec &nrof_used_iterations,
                         const bvec &true_bits)
{

  if((n1 == 1) && (n2 == 1) && (metric != Metric::MAP)) {
    //This is a speed optimized decoder for R=1/3 (log domain metrics only)
    decode_n3(received_signal, decoded_bits, nrof_used_iterations, true_bits);
  }
  else {

    //Local variables:
    vec rec, rec_syst1, rec_syst2;
    mat rec_parity1, rec_parity2;
    bmat decoded_bits_i;
    int no_blocks, i, j, k, nrof_used_iterations_i;
    int count;
    bool CHECK_TRUE_BITS;

    //Initilaizations:
    no_blocks = received_signal.length() / Ncoded;
    decoded_bits.set_size(no_blocks * Nuncoded, false);
    decoded_bits_i.set_size(iterations, no_blocks * Nuncoded, false);
    rec_syst1.set_size(Nuncoded + m_tail, false);
    rec_syst2.set_size(Nuncoded + m_tail, false);
    rec_syst2.clear();
    rec_parity1.set_size(Nuncoded + m_tail, n1, false);
    rec_parity2.set_size(Nuncoded + m_tail, n2, false);
    nrof_used_iterations.set_size(no_blocks, false);

    //Check the vector true_bits:
    if(true_bits.size() > 1) {
      it_assert(true_bits.size() == (Nuncoded * no_blocks), "Turbo_Codec::decode: Wrong size of input vectors");
      CHECK_TRUE_BITS = true;
    }
    else {
      CHECK_TRUE_BITS = false;
    }

    //Set the bit counter to zero:
    count = 0;

    //Itterate over all received code blocks:
    for(i = 0; i < no_blocks; i++) {

      //The data part:
      for(k = 0; k < Nuncoded; k++) {
        rec_syst1(k) = received_signal(count);
        count++;                               //Systematic bit
        for(j = 0; j < n1; j++) { rec_parity1(k, j) = received_signal(count); count++; }   //Parity-1 bits
        for(j = 0; j < n2; j++) { rec_parity2(k, j) = received_signal(count); count++; }   //Parity-2 bits
      }

      //The first tail:
      for(k = 0; k < m_tail; k++) {
        rec_syst1(Nuncoded + k) = received_signal(count);
        count++;                               //Tail 1 systematic bit
        for(j = 0; j < n1; j++) { rec_parity1(Nuncoded + k, j) = received_signal(count); count++; }   //Tail 1 parity-1 bits
      }

      //The second tail:
      for(k = 0; k < m_tail; k++) {
        rec_syst2(Nuncoded + k) = received_signal(count);
        count++;                              //Tail2 systematic bit
        for(j = 0; j < n2; j++) { rec_parity2(Nuncoded + k, j) = received_signal(count); count++; }  //Tali2 parity-2 bits
      }

      //Scale the input data if necessary:
      if(Lc != 1.0) {
        rec_syst1 *= Lc;
        rec_syst2 *= Lc;
        rec_parity1 *= Lc;
        rec_parity2 *= Lc;
      }

      //Decode the block:
      if(CHECK_TRUE_BITS) {
        decode_block(rec_syst1, rec_syst2, rec_parity1, rec_parity2, decoded_bits_i,
                     nrof_used_iterations_i, true_bits.mid(i * Nuncoded, Nuncoded));
        nrof_used_iterations(i) = nrof_used_iterations_i;
      }
      else {
        decode_block(rec_syst1, rec_syst2, rec_parity1, rec_parity2, decoded_bits_i, nrof_used_iterations_i);
        nrof_used_iterations(i) = nrof_used_iterations_i;
      }

      //Put the decoded bits in the output vector:
      decoded_bits.replace_mid(i * Nuncoded, decoded_bits_i.get_row(iterations - 1));

    }

  }

}

void Turbo_Codec::encode_block(const bvec &input, bvec &in1, bvec &in2, bmat &parity1, bmat &parity2)
{
  //Local variables:
  bvec tail1, tail2, interleaved_input;

  //Error check:
  it_assert(input.length() == Nuncoded, "Turbo_Codec::encode_block: Parameter error in Nuncoded.");

  //Initializations:
  tail1.set_size(m_tail, false);
  tail1.clear();
  tail2.set_size(m_tail, false);
  tail2.clear();
  parity1.set_size(Nuncoded + m_tail, n1, false);
  parity1.clear();
  parity2.set_size(Nuncoded + m_tail, n2, false);
  parity2.clear();
  interleaved_input.set_size(Nuncoded, false);
  interleaved_input.clear();

  //The first encoder:
  rscc1.encode_tail(input, tail1, parity1);

  //The interleaver:
  bit_interleaver.interleave(input, interleaved_input);

  //The second encoder:
  rscc2.encode_tail(interleaved_input, tail2, parity2);

  //The input vectors used to the two constituent encoders:
  in1 = concat(input, tail1);
  in2 = concat(interleaved_input, tail2);

}

void Turbo_Codec::decode_block(const vec &rec_syst1, const vec &rec_syst2, const mat &rec_parity1,
                               const mat &rec_parity2, bmat &decoded_bits_i, int &nrof_used_iterations_i,
                               const bvec &true_bits)
{
  //Local variables:
  int i;
  int count, l, k;
  vec extrinsic_input, extrinsic_output, int_rec_syst1, int_rec_syst, tmp;
  vec deint_rec_syst2, rec_syst, sub_rec_syst, Le12, Le21, Le12_int, Le21_int, L, tail1, tail2;
  bool CHECK_TRUE_BITS, CONTINUE;

  //Size initializations:
  decoded_bits_i.set_size(iterations, Nuncoded, false);
  Le12.set_size(Nuncoded + m_tail, false);
  Le21.set_size(Nuncoded + m_tail, false);
  Le21.zeros();

  //Calculate the interleaved and the deinterleaved sequences:
  float_interleaver.interleave(rec_syst1.left(interleaver_size), int_rec_syst1);
  float_interleaver.deinterleave(rec_syst2.left(interleaver_size), deint_rec_syst2);

  //Combine the results from rec_syst1 and rec_syst2 (in case some bits are transmitted several times)
  rec_syst = rec_syst1.left(interleaver_size) + deint_rec_syst2;
  int_rec_syst = rec_syst2.left(interleaver_size) + int_rec_syst1;

  //Get the two tails
  tail1 = rec_syst1.right(m_tail);
  tail2 = rec_syst2.right(m_tail);

  //Form the input vectors (including tails) to the two decoders:
  rec_syst = concat(rec_syst, tail1);
  int_rec_syst = concat(int_rec_syst, tail2);

  // Check the vector true_bits
  if(true_bits.size() > 1) {
    it_assert(true_bits.size() == Nuncoded, "Turbo_Codec::decode_block: Illegal size of input vector true_bits");
    CHECK_TRUE_BITS = true;
  }
  else {
    CHECK_TRUE_BITS = false;
  }

  if(CHECK_TRUE_BITS) {
    it_assert(adaptive_stop == false,
              "Turbo_Codec::decode_block: You can not stop iterations both adaptively and on true bits");
  }

  // Do the iterative decoding:
  nrof_used_iterations_i = iterations;
  for(i = 0; i < iterations; i++) {

    // Decode Code 1
    if(metric == Metric::MAP) {
      rscc1.map_decode(rec_syst, rec_parity1, Le21, Le12, true);
    }
    else if((metric == Metric::LOGMAX) || (metric == Metric::LOGMAP) || (metric == Metric::TABLE)) {
      rscc1.log_decode(rec_syst, rec_parity1, Le21, Le12, true, string_from_metric(metric));
      if(logmax_scale_factor != 1.0) {
        Le12 *= logmax_scale_factor;
      }
    }
    else {
      it_error("Turbo_Codec::decode_block: Illegal metric value");
    }

    // Interleave the extrinsic information:
    float_interleaver.interleave(Le12.left(interleaver_size), tmp);
    Le12_int = concat(tmp, zeros(Le12.size() - interleaver_size));

    // Decode Code 2
    if(metric == Metric::MAP) {
      rscc2.map_decode(int_rec_syst, rec_parity2, Le12_int, Le21_int, true);
    }
    else if((metric == Metric::LOGMAX) || (metric == Metric::LOGMAP) || (metric == Metric::TABLE)) {
      rscc2.log_decode(int_rec_syst, rec_parity2, Le12_int, Le21_int, true, string_from_metric(metric));
      if(logmax_scale_factor != 1.0) {
        Le21_int *= logmax_scale_factor;
      }
    }
    else {
      it_error("Turbo_Codec::decode_block: Illegal metric value");
    }

    // De-interleave the extrinsic information:
    float_interleaver.deinterleave(Le21_int.left(interleaver_size), tmp);
    Le21 = concat(tmp, zeros(Le21_int.size() - interleaver_size));

    // Take bit decisions
    L = rec_syst + Le21 + Le12;
    count = 0;
    for(l = 0; l < Nuncoded; l++) {
      (L(l) > 0.0) ? (decoded_bits_i(i, count) = bin(0)) : (decoded_bits_i(i, count) = bin(1));
      count++;
    }

    //Check if it is possible to stop iterating early:
    CONTINUE = true;
    if(i < (iterations - 1)) {

      if(CHECK_TRUE_BITS) {
        CONTINUE = false;
        for(k = 0; k < Nuncoded; k++) { if(true_bits(k) != decoded_bits_i(i, k)) { CONTINUE = true; break; } }
      }

      if((adaptive_stop) && (i > 0)) {
        CONTINUE = false;
        for(k = 0; k < Nuncoded; k++) { if(decoded_bits_i(i - 1, k) != decoded_bits_i(i, k)) { CONTINUE = true; break; } }
      }

    }

    //Check if iterations shall continue:
    if(CONTINUE == false) {
      //Copy the results from current iteration to all following iterations:
      for(k = (i + 1); k < iterations; k++) {
        decoded_bits_i.set_row(k, decoded_bits_i.get_row(i));
        nrof_used_iterations_i = i + 1;
      }
      break;
    }

  }

}

void Turbo_Codec::decode_n3(const vec &received_signal, bvec &decoded_bits, ivec &nrof_used_iterations,
                            const bvec &true_bits)
{
  //Local variables:
  vec rec, rec_syst1, int_rec_syst1, rec_syst2;
  vec rec_parity1, rec_parity2;
  vec extrinsic_input, extrinsic_output, Le12, Le21, Le12_int, Le21_int, L;
  bvec temp_decoded_bits;
  int no_blocks, i, j, k, l, nrof_used_iterations_i;
  int count, count_out;
  bool CHECK_TRUE_BITS, CONTINUE;

  //Initializations:
  no_blocks = received_signal.length() / Ncoded;
  decoded_bits.set_size(no_blocks * Nuncoded, false);
  rec_syst1.set_size(Nuncoded + m_tail, false);
  rec_syst2.set_size(Nuncoded + m_tail, false);
  rec_syst2.clear();
  rec_parity1.set_size(Nuncoded + m_tail, false);
  rec_parity2.set_size(Nuncoded + m_tail, false);
  temp_decoded_bits.set_size(Nuncoded, false);
  decoded_bits_previous_iteration.set_size(Nuncoded, false);
  nrof_used_iterations.set_size(no_blocks, false);

  //Size initializations:
  Le12.set_size(Nuncoded, false);
  Le21.set_size(Nuncoded, false);

  //Set the bit counter to zero:
  count = 0;
  count_out = 0;

  // Check the vector true_bits
  if(true_bits.size() > 1) {
    it_assert(true_bits.size() == Nuncoded * no_blocks, "Turbo_Codec::decode_n3: Illegal size of input vector true_bits");
    CHECK_TRUE_BITS = true;
  }
  else {
    CHECK_TRUE_BITS = false;
  }

  if(CHECK_TRUE_BITS) {
    it_assert(adaptive_stop == false,
              "Turbo_Codec::decode_block: You can not stop iterations both adaptively and on true bits");
  }

  //Iterate over all received code blocks:
  for(i = 0; i < no_blocks; i++) {

    //Reset extrinsic data:
    Le21.zeros();

    //The data part:
    for(k = 0; k < Nuncoded; k++) {
      rec_syst1(k)   = received_signal(count);
      count++; //Systematic bit
      rec_parity1(k) = received_signal(count);
      count++; //Parity-1 bits
      rec_parity2(k) = received_signal(count);
      count++; //Parity-2 bits
    }

    //The first tail:
    for(k = 0; k < m_tail; k++) {
      rec_syst1(Nuncoded + k)   = received_signal(count);
      count++; //Tail 1 systematic bit
      rec_parity1(Nuncoded + k) = received_signal(count);
      count++; //Tail 1 parity-1 bits
    }

    //The second tail:
    for(k = 0; k < m_tail; k++) {
      rec_syst2(Nuncoded + k)   = received_signal(count);
      count++; //Tail2 systematic bit
      rec_parity2(Nuncoded + k) = received_signal(count);
      count++; //Tali2 parity-2 bits
    }

    float_interleaver.interleave(rec_syst1.left(Nuncoded), int_rec_syst1);
    rec_syst2.replace_mid(0, int_rec_syst1);

    //Scale the input data if necessary:
    if(Lc != 1.0) {
      rec_syst1   *= Lc;
      rec_syst2   *= Lc;
      rec_parity1 *= Lc;
      rec_parity2 *= Lc;
    }

    //Decode the block:
    CONTINUE = true;
    nrof_used_iterations_i = iterations;
    for(j = 0; j < iterations; j++) {

      rscc1.log_decode_n2(rec_syst1, rec_parity1, Le21, Le12, true, string_from_metric(metric));
      if(logmax_scale_factor != 1.0) { Le12 *= logmax_scale_factor; }
      float_interleaver.interleave(Le12, Le12_int);

      rscc2.log_decode_n2(rec_syst2, rec_parity2, Le12_int, Le21_int, true, string_from_metric(metric));
      if(logmax_scale_factor != 1.0) { Le21_int *= logmax_scale_factor; }
      float_interleaver.deinterleave(Le21_int, Le21);

      if(adaptive_stop) {
        L = rec_syst1.left(Nuncoded) + Le21.left(Nuncoded) + Le12.left(Nuncoded);
        for(l = 0; l < Nuncoded; l++) {(L(l) > 0.0) ? (temp_decoded_bits(l) = bin(0)) : (temp_decoded_bits(l) = bin(1)); }
        if(j == 0) { decoded_bits_previous_iteration = temp_decoded_bits; }
        else {
          if(temp_decoded_bits == decoded_bits_previous_iteration) {
            CONTINUE = false;
          }
          else if(j < (iterations - 1)) {
            decoded_bits_previous_iteration = temp_decoded_bits;
          }
        }
      }

      if(CHECK_TRUE_BITS) {
        L = rec_syst1.left(Nuncoded) + Le21.left(Nuncoded) + Le12.left(Nuncoded);
        for(l = 0; l < Nuncoded; l++) {(L(l) > 0.0) ? (temp_decoded_bits(l) = bin(0)) : (temp_decoded_bits(l) = bin(1)); }
        if(temp_decoded_bits == true_bits.mid(i * Nuncoded, Nuncoded)) {
          CONTINUE = false;
        }
      }

      if(CONTINUE == false) { nrof_used_iterations_i = j + 1; break; }

    }

    //Take final bit decisions
    L = rec_syst1.left(Nuncoded) + Le21.left(Nuncoded) + Le12.left(Nuncoded);
    for(l = 0; l < Nuncoded; l++) {
      (L(l) > 0.0) ? (decoded_bits(count_out) = bin(0)) : (decoded_bits(count_out) = bin(1));
      count_out++;
    }

    nrof_used_iterations(i) = nrof_used_iterations_i;

  }

}

// -------------------------------------------------------------------------------------
// Punctured Turbo Codec
// -------------------------------------------------------------------------------------

void Punctured_Turbo_Codec::set_parameters(ivec gen1, ivec gen2, int constraint_length, const ivec &interleaver_sequence, bmat &pmatrix, int in_iterations, std::string in_metric, double in_logmax_scale_factor, bool in_adaptive_stop, itpp::LLR_calc_unit lcalc)
{
  Turbo_Codec::set_parameters(gen1, gen2, constraint_length, interleaver_sequence, in_iterations, in_metric, in_logmax_scale_factor, in_adaptive_stop, lcalc);
  set_puncture_matrix(pmatrix);
}

void Punctured_Turbo_Codec::set_puncture_matrix(const bmat &pmatrix)
{
  int p, j;

  punct_total = 0;
  punct_total2 = 0;

  it_error_if(pmatrix.rows() != n_tot || pmatrix.cols() == 0, "Wrong size of puncture matrix");
  puncture_matrix = pmatrix;
  Period = puncture_matrix.cols();

  // all rows
  for(j = 0; j < n_tot; j++) {
    for(p = 0; p < Period; p++)
      punct_total += static_cast<int>(puncture_matrix(j, p));
  }
  // systematic bits
  for(p = 0; p < Period; p++)
    punct_total2 += static_cast<int>(puncture_matrix(0, p));
  punct_total1 = punct_total2;
  // 1st code parity bits
  for(j = 1; j < n1 + 1; j++) {
    for(p = 0; p < Period; p++)
      punct_total1 += static_cast<int>(puncture_matrix(j, p));
  }
  // 2nd code parity bits
  for(j = 1 + n1; j < n_tot; j++)  {
    for(p = 0; p < Period; p++)
      punct_total2 += static_cast<int>(puncture_matrix(j, p));
  }

  // nominal rate
  rate = Period / static_cast<double>(punct_total);
  calculate_punctured_size();
}


double Punctured_Turbo_Codec::get_rate(bool nominal)
{
  if(nominal) return rate;
  else {
    if(Period == 0)
      return static_cast<double>(Nuncoded) / Ncoded;
    else
      return static_cast<double>(Nuncoded) / pNcoded;
  }
}


bvec Punctured_Turbo_Codec::encode(const bvec &input)
{
  bvec coded_bits;

  encode(input, coded_bits);
  return coded_bits;
}

bvec Punctured_Turbo_Codec::decode(const vec &received_signal)
{
  bvec decoded_bits;

  decode(received_signal, decoded_bits);
  return decoded_bits;
}

void Punctured_Turbo_Codec::encode(const bvec &input, bvec &output)
{
  it_assert(Period != 0, "Punctured_Turbo_Codec: puncture matrix is not set");

  Turbo_Codec::encode(input, output);

  int i, k, p, j, p1;
  int no_blocks = output.size() / Ncoded;
  int count = 0, count_p = 0;

  for(k = 0; k < no_blocks; k++) {
    p = 0;
    // data
    for(i = 0; i < Nuncoded; i++) {
      for(j = 0; j < n_tot; j++) {
        if(puncture_matrix(j, p) == bin(1)) {
          output(count_p) = output(count);
          count_p++;
        }
        count++;
      }
      p = (p + 1) % Period;
    }
    p1 = p;

    //The first tail:
    for(i = 0; i < m_tail; i++) {
      for(j = 0; j < n1 + 1; j++) {
        if(puncture_matrix(j, p) == bin(1)) {
          output(count_p) = output(count);
          count_p++;
        }
        count++;
      }
      p = (p + 1) % Period;
    }
    //The second tail:
    for(i = 0; i < m_tail; i++) {
      // systematic bit
      if(puncture_matrix(0, p1) == bin(1)) {
        output(count_p) = output(count);
        count_p++;
      }
      count++;
      // parity
      for(j = n1 + 1; j < n_tot; j++) {
        if(puncture_matrix(j, p1) == bin(1)) {
          output(count_p) = output(count);
          count_p++;
        }
        count++;
      }
      p1 = (p1 + 1) % Period;
    }
  }  //for

  output.set_size(count_p, true);
}


void Punctured_Turbo_Codec::decode(const vec &received_signal, bvec &decoded_bits, ivec &nrof_used_iterations, const bvec &true_bits)
{
  int i, k, p, j, p1;
  int index = 0, index_p = 0;
  int no_blocks = received_signal.size() / pNcoded;
  vec temp(no_blocks * Ncoded);

  it_assert(Period != 0, "Punctured_Turbo_Codec: puncture matrix is not set");
  it_assert(no_blocks * pNcoded == received_signal.size(), "Punctured_Turbo_Codec: received vector is not an integer multiple of encoded block");
  for(i = 0; i < no_blocks; i++)  {
    p = 0;
    // data
    for(k = 0; k < Nuncoded; k++)  {
      for(j = 0; j < n_tot; j++) {
        if(puncture_matrix(j, p) == bin(1)) {
          temp(index) = received_signal(index_p);
          index_p++;
        }
        else { // insert dummy symbols with same contribution for 0 and 1
          temp(index) = 0;
        }
        index++;
      }
      p = (p + 1) % Period;
    } // for
    p1 = p;

    // 1st code tail
    for(k = 0; k < m_tail; k++) {
      for(j = 0; j < n1 + 1; j++) {
        if(puncture_matrix(j, p) == bin(1)) {
          temp(index) = received_signal(index_p);
          index_p++;
        }
        else { // insert dummy symbols with same contribution for 0 and 1
          temp(index) = 0;
        }
        index++;
      }
      p = (p + 1) % Period;
    } // for
    // 2nd code tail
    for(k = 0; k < m_tail; k++) {
      // systematic bits
      if(puncture_matrix(0, p1) == bin(1)) {
        temp(index) = received_signal(index_p);
        index_p++;
      }
      else { // insert dummy symbols with same contribution for 0 and 1
        temp(index) = 0;
      }
      index++;
      // parity bits
      for(j = n1 + 1; j < n_tot; j++) {
        if(puncture_matrix(j, p1) == bin(1)) {
          temp(index) = received_signal(index_p);
          index_p++;
        }
        else { // insert dummy symbols with same contribution for 0 and 1
          temp(index) = 0;
        }
        index++;
      }
      p1 = (p1 + 1) % Period;
    } //2nd tail
  }  // for

  Turbo_Codec::decode(temp, decoded_bits, nrof_used_iterations, true_bits);
}

void Punctured_Turbo_Codec::decode(const vec &received_signal, bvec &decoded_bits, const bvec &true_bits)
{
  ivec nrof_used_iterations;
  decode(received_signal, decoded_bits, nrof_used_iterations, true_bits);
}

void Punctured_Turbo_Codec::calculate_punctured_size(void)
{
  int i, j, ii, p = 0, p1;

  if(Period == 0)
    pNcoded = Ncoded;
  else  {
    i = (Nuncoded / Period);
    ii = i * punct_total;
    i *= Period;
    for(; i < Nuncoded; i++) {
      for(j = 0; j < n_tot; j++)
        if(puncture_matrix(j, p) == bin(1))  ii++;
      p = (p + 1) % Period;
    }
    p1 = p;

    // first tail
    for(i = 0; i < m_tail; i++) {
      for(j = 0; j < n1 + 1; j++)
        if(puncture_matrix(j, p) == bin(1))  ii++;
      p = (p + 1) % Period;
    }
    // second tail
    for(i = 0; i < m_tail; i++) {
      for(j = 0; j < n_tot; j++)  {
        if(puncture_matrix(j, p1) == bin(1))  ii++;
        if(j == 0) j += n1;
      }
      p1 = (p1 + 1) % Period;
    }

    pNcoded = ii;
  }
}

int calculate_uncoded_size(Punctured_Turbo_Codec &tc, int punctured_size, int &fill_bits)
{
  // fill_bits - number of bits that must be added at the end of encoded block (in order to obtain punctured_size length vector)

  int Nuncoded;

  if(tc.Period == 0) {
    Nuncoded = (punctured_size - tc.m_tail * (tc.n_tot + 1)) / tc.n_tot;
    fill_bits = punctured_size - (Nuncoded * tc.n_tot + tc.m_tail * (tc.n_tot + 1));
  }
  else  {
    int i, j, ii, p, p1, no_pblocks;
    // uncoded - // no_pblocks might be too small
    j = static_cast<int>(std::ceil(static_cast<double>(tc.m_tail * (tc.punct_total1 + tc.punct_total2)) / tc.Period));
    no_pblocks = (punctured_size - j) / tc.punct_total;
    ii = punctured_size - no_pblocks * tc.punct_total - j;

    for(i = 0; i < 2 * tc.Period; i++) {
      for(j = 0; j < tc.n_tot; j++)
        if(tc.puncture_matrix(j, i % tc.Period) == bin(1))  ii--;
      if(ii < 0) break;
    }
    Nuncoded = no_pblocks * tc.Period + i;

    // punctured (from uncoded)
    no_pblocks = (Nuncoded / tc.Period);
    ii = no_pblocks * tc.punct_total;
    p = 0;
    for(i = no_pblocks * tc.Period; i < Nuncoded; i++) {
      for(j = 0; j < tc.n_tot; j++)
        if(tc.puncture_matrix(j, p) == bin(1))  ii++;
      p = (p + 1) % tc.Period;
    }
    p1 = p;
    // first tail
    for(i = 0; i < tc.m_tail; i++) {
      for(j = 0; j < tc.n1 + 1; j++)
        if(tc.puncture_matrix(j, p1) == bin(1))  ii++;
      p1 = (p1 + 1) % tc.Period;
    }
    // second tail
    for(i = 0; i < tc.m_tail; i++) {
      for(j = 0; j < tc.n_tot; j++)  {
        if(tc.puncture_matrix(j, p1) == bin(1))  ii++;
        if(j == 0) j += tc.n1;
      }
      p1 = (p1 + 1) % tc.Period;
    }
    fill_bits =  punctured_size - ii;
  }

  return Nuncoded;
}


// -------------------------------------------------------------------------------------
// Special interleaver sequence generators
// -------------------------------------------------------------------------------------

ivec wcdma_turbo_interleaver_sequence(int interleaver_size)
{
  const int MAX_INTERLEAVER_SIZE = 5114;
  const int MIN_INTERLEAVER_SIZE = 40;
  int K;  //Interleaver size
  int R;  //Number of rows of rectangular matrix
  int C;  //Number of columns of rectangular matrix
  int p;  //Prime number
  int v;  //Primitive root
  ivec s; //Base sequence for intra-row permutation
  ivec q; //Minimum prime integers
  ivec r; //Permuted prime integers
  ivec T; //Inter-row permutation pattern
  imat U; //Intra-row permutation patter
  ivec I; //The interleaver sequence
  ivec primes, roots, Pat1, Pat2, Pat3, Pat4, Isort;
  int i, j, qj, temp, row, col, index, count;

  if(interleaver_size > MAX_INTERLEAVER_SIZE) {

    I = sort_index(randu(interleaver_size));
    return I;

  }
  else {

    p = 0;
    v = 0;

    //Check the range of the interleaver size:
    it_assert(interleaver_size <= MAX_INTERLEAVER_SIZE, "wcdma_turbo_interleaver_sequence: The interleaver size is to large");
    it_assert(interleaver_size >= MIN_INTERLEAVER_SIZE, "wcdma_turbo_interleaver_sequence: The interleaver size is to small");

    K = interleaver_size;

    //Definitions of primes and associated primitive roots:
    primes = "2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211 223 227 229 233 239 241 251 257";
    roots = "0 0 0 3 2 2 3 2 5 2 3 2 6 3 5 2 2 2 2 7 5 3 2 3 5 2 5 2 6 3 3 2 3 2 2 6 5 2 5 2 2 2 19 5 2 3 2 3 2 6 3 7 7 6 3";

    //Determine R
    if((K >= 40) && (K <= 159)) {
      R = 5;
    }
    else if(((K >= 160) && (K <= 200)) || ((K >= 481) && (K <= 530))) {
      R = 10;
    }
    else {
      R = 20;
    }

    //Determine C
    if((K >= 481) && (K <= 530)) {
      p = 53;
      v = 2;
      C = p;
    }
    else {
      //Find minimum prime p such that (p+1) - K/R >= 0 ...
      for(i = 0; i < primes.length(); i++) {
        if((double(primes(i) + 1) - double(K) / double(R)) >= 0.0) {
          p = primes(i);
          v = roots(i);
          break;
        }
      }
      //... and etermine C such that
      if((double(p) - double(K) / double(R)) >= 0.0) {
        if((double(p) - 1.0 - double(K) / double(R)) >= 0.0) {
          C = p - 1;
        }
        else {
          C = p;
        }
      }
      else {
        C = p + 1;
      }
    }

    //Construct the base sequencs s for intra-row permutaions
    s.set_size(p - 1, false);
    s.clear();
    s(0) = 1;
    for(i = 1; i <= (p - 2); i++) {
      s(i) = mod(v * s(i - 1), p);
    }

    //Let q(0) = 1 be the first prime integer in {q(j)}, and select the consecutive
    //minimum prime integers {q(j)}, j = 1, 2, ..., (R-1) such that gcd( q(j), p-1) == 1, q(j) > 6, and q(j) > q(j-1)
    q.set_size(R, false);
    q.clear();
    q(0) = 1;
    for(j = 1; j <= (R - 1); j++) {
      for(i = 0; i < primes.length(); i++) {
        qj = primes(i);
        if((qj > 6) && (qj > q(j - 1))) {
          if(gcd(qj, p - 1) == 1) {
            q(j) = qj;
            break;
          }
        }
      }
    }

    //Definitions of Pat1, Pat2, Pat3, and Pat4:
    Pat1 = "19 9 14 4 0 2 5 7 12 18 10 8 13 17 3 1 16 6 15 11";
    Pat2 = "19 9 14 4 0 2 5 7 12 18 16 13 17 15 3 1 6 11 8 10";
    Pat3 = "9 8 7 6 5 4 3 2 1 0";
    Pat4 = "4 3 2 1 0";

    //T(j) is the inter-row permutation patters defined as one of the following four
    //kinds of patterns: Pat1, Pat2, Pat3, and Pat4 depending on the number of input bits K
    if(K >= 3211) {
      T = Pat1;
    }
    else if(K >= 3161) {
      T = Pat2;
    }
    else if(K >= 2481) {
      T = Pat1;
    }
    else if(K >= 2281) {
      T = Pat2;
    }
    else if(K >= 531) {
      T = Pat1;
    }
    else if(K >= 481) {
      T = Pat3;
    }
    else if(K >= 201) {
      T = Pat1;
    }
    else if(K >= 160) {
      T = Pat3;
    }
    else {
      T = Pat4;
    }

    //Permute {q(j)} to make {r(j)} such that r(T(j)) = q(j), j = 0, 1, ..., (R-1),
    //where T(j) indicates the original row position of the j-th permuted row
    r.set_size(R, false);
    r.clear();
    for(j = 0; j <= (R - 1); j++) {
      r(T(j)) = q(j);
    }

    //U(j,i) is the input bit position of i-th output after the permutation of j-th row
    //Perform the j-th (j=0, 1, 2, ..., (R-1)) intra-row permutation as
    U.set_size(R, C, false);
    U.clear();
    if(C == p) {
      for(j = 0; j <= (R - 1); j++) {
        for(i = 0; i <= (p - 2); i++) {
          U(j, i) = s(mod(i * r(j), p - 1));
        }
        U(j, p - 1) = 0;
      }
    }
    else if(C == (p + 1)) {
      for(j = 0; j <= (R - 1); j++) {
        for(i = 0; i <= (p - 2); i++) {
          U(j, i) = s(mod(i * r(j), p - 1));
        }
        U(j, p - 1) = 0;
        U(j, p) = p;
      }
      if(K == (C * R)) {
        temp = U(R - 1, p);
        U(R - 1, p) = U(R - 1, 0);
        U(R - 1, 0) = temp;
      }
    }
    else if(C == (p - 1)) {
      for(j = 0; j <= (R - 1); j++) {
        for(i = 0; i <= (p - 2); i++) {
          U(j, i) = s(mod(i * r(j), p - 1)) - 1;
        }
      }
    }

    //Calculate the interleaver sequence:
    I.set_size(K, false);
    I.clear();
    count = 0;
    for(i = 0; i < C; i++) {
      for(j = 0; j < R; j++) {
        row = T(j);
        col = U(row, i);
        index = row * C + col;
        if(index < K) {
          I(count) = index;
          count++;
        }
      }
    }

    return I;
  }
}

ivec lte_turbo_interleaver_sequence(int interleaver_size)
// for standard see pp. 14 http://www.3gpp.org/FTP/Specs/latest/Rel-10/36_series/36212-a50.zip
{

  //Definitions of block lengths and associated f1 and f2 factors:
  ivec block_lengths("40 48 56 64 72 80 88 96 104 112 120 128 136 144 152 160 168 176 184 192 200 208 216 224 232 240 248 256 264 272 280 288 296 304 312 320 328 336 344 352 360 368 376 384 392 400 408 416 424 432 440 448 456 464 472 480 488 496 504 512 528 544 560 576 592 608 624 640 656 672 688 704 720 736 752 768 784 800 816 832 848 864 880 896 912 928 944 960 976 992 1008 1024 1056 1088 1120 1152 1184 1216 1248 1280 1312 1344 1376 1408 1440 1472 1504 1536 1568 1600 1632 1664 1696 1728 1760 1792 1824 1856 1888 1920 1952 1984 2016 2048 2112 2176 2240 2304 2368 2432 2496 2560 2624 2688 2752 2816 2880 2944 3008 3072 3136 3200 3264 3328 3392 3456 3520 3584 3648 3712 3776 3840 3904 3968 4032 4096 4160 4224 4288 4352 4416 4480 4544 4608 4672 4736 4800 4864 4928 4992 5056 5120 5184 5248 5312 5376 5440 5504 5568 5632 5696 5760 5824 5888 5952 6016 6080 6144");
  ivec f1_factors(" 3  7 19  7  7 11  5 11   7  41 103  15   9  17   9  21 101  21  57  23  13  27  11  27  85  29  33  15  17  33 103  19  19  37  19  21  21 115 193  21 133  81  45  23 243 151 155  25  51  47  91  29  29 247  29  89  91 157  55  31  17  35 227  65  19  37  41  39 185  43  21 155  79 139  23 217  25  17 127  25 239  17 137 215  29  15 147  29  59  65   55   31   17  171   67   35   19   39   19  199   21  211   21   43  149   45   49   71   13   17   25  183   55  127   27   29   29   57   45   31   59  185  113   31   17  171  209  253  367  265  181   39   27  127  143   43   29   45  157   47   13  111  443   51   51  451  257   57  313  271  179  331  363  375  127   31   33   43   33  477   35  233  357  337   37   71   71   37   39  127   39   39   31  113   41  251   43   21   43   45   45  161   89  323   47   23   47  263");
  ivec f2_factors("10 12 42 16 18 20 22 24  26  84  90  32  34 108  38 120  84  44  46  48  50  52  36  56  58  60  62  32 198  68 210  36  74  76  78 120  82  84  86  44  90  46  94  48  98  40 102  52 106  72 110 168 114  58 118 180 122  62  84  64  66  68 420  96  74  76 234  80  82 252  86  44 120  92  94  48  98  80 102  52 106  48 110 112 114  58 118  60 122 124   84   64   66  204  140   72   74   76   78  240   82  252   86   88   60   92  846   48   28   80  102  104  954   96  110  112  114  116  354  120  610  124  420   64   66  136  420  216  444  456  468   80  164  504  172   88  300   92  188   96   28  240  204  104  212  192  220  336  228  232  236  120  244  248  168   64  130  264  134  408  138  280  142  480  146  444  120  152  462  234  158   80   96  902  166  336  170   86  174  176  178  120  182  184  186   94  190  480");
  const int MAX_INTERLEAVER_SIZE = 6144;
  const int MIN_INTERLEAVER_SIZE = 40;

  // Check the range of the interleaver size:
  it_assert(interleaver_size <= MAX_INTERLEAVER_SIZE, "lte_turbo_interleaver_sequence: The interleaver size is too large");
  it_assert(interleaver_size >= MIN_INTERLEAVER_SIZE, "lte_turbo_interleaver_sequence: The interleaver size is too small");

  // Check whether the given interleaver size is correct:
  int left, right, index, temp;
  bool search = true;

  // do a binary search for interleaver_size in block_lengths
  left = 0;
  right = block_lengths.size() - 1;
  temp = 0;
  while((search) && (left <= right)) {
    index = (left + right) / 2;
    temp = block_lengths(index);
    if(temp == interleaver_size) {
      search = false;
    }
    else {
      if(temp > interleaver_size) {
        right = index - 1;
      }
      else {
        left = index + 1;
      }
    }
  }
  it_assert(!search, "lte_turbo_interleaver_sequence: The interleaver size is incorrect!");

  // Definitions of key parameters:
  int K = interleaver_size; // Interleaver size
  int f1_factor = f1_factors(index);
  int f2_factor = f2_factors(index);
  ivec I(K); //The interleaver sequence

  // Calculate the interleaver sequence:
  for(int i = 0; i < K; i++) {
    I(i) = static_cast<int>((static_cast<int64_t>(i) * f1_factor + static_cast<int64_t>(i) * i * f2_factor) % K);
  }

  return I;
}


} // namespace itpp