1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
|
/*!
* \file
* \brief Miscellaneous statistics functions and classes - source file
* \author Tony Ottosson, Johan Bergman and Adam Piatyszek
*
* -------------------------------------------------------------------------
*
* Copyright (C) 1995-2010 (see AUTHORS file for a list of contributors)
*
* This file is part of IT++ - a C++ library of mathematical, signal
* processing, speech processing, and communications classes and functions.
*
* IT++ is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* IT++ is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along
* with IT++. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include <itpp/base/algebra/svd.h>
#include <itpp/stat/misc_stat.h>
namespace itpp
{
double mean(const vec &v)
{
return sum(v) / v.length();
}
std::complex<double> mean(const cvec &v)
{
return sum(v) / double(v.size());
}
double mean(const svec &v)
{
return (double)sum(v) / v.length();
}
double mean(const ivec &v)
{
return (double)sum(v) / v.length();
}
double mean(const mat &m)
{
return sum(sum(m)) / (m.rows()*m.cols());
}
std::complex<double> mean(const cmat &m)
{
return sum(sum(m)) / static_cast<std::complex<double> >(m.rows()*m.cols());
}
double mean(const smat &m)
{
return static_cast<double>(sum(sum(m))) / (m.rows()*m.cols());
}
double mean(const imat &m)
{
return static_cast<double>(sum(sum(m))) / (m.rows()*m.cols());
}
double norm(const cvec &v)
{
double E = 0.0;
for (int i = 0; i < v.length(); i++)
E += std::norm(v[i]);
return std::sqrt(E);
}
double norm(const cvec &v, int p)
{
double E = 0.0;
for (int i = 0; i < v.size(); i++)
E += std::pow(std::norm(v[i]), p / 2.0); // Yes, 2.0 is correct!
return std::pow(E, 1.0 / p);
}
double norm(const cvec &v, const std::string &)
{
return norm(v, 2);
}
/*
* Calculate the p-norm of a real matrix
* p = 1: max(svd(m))
* p = 2: max(sum(abs(X)))
*/
double norm(const mat &m, int p)
{
it_assert((p == 1) || (p == 2),
"norm(): Can only calculate a matrix norm of order 1 or 2");
if (p == 1)
return max(sum(abs(m)));
else
return max(svd(m));
}
/*
* Calculate the p-norm of a complex matrix
* p = 1: max(svd(m))
* p = 2: max(sum(abs(X)))
*/
double norm(const cmat &m, int p)
{
it_assert((p == 1) || (p == 2),
"norm(): Can only calculate a matrix norm of order 1 or 2");
if (p == 1)
return max(sum(abs(m)));
else
return max(svd(m));
}
// Calculate the Frobenius norm of matrix m for s = "fro"
double norm(const mat &m, const std::string &s)
{
it_assert(s == "fro", "norm(): Unrecognised norm");
double E = 0.0;
for (int r = 0; r < m.rows(); ++r) {
for (int c = 0; c < m.cols(); ++c) {
E += m(r, c) * m(r, c);
}
}
return std::sqrt(E);
}
// Calculate the Frobenius norm of matrix m for s = "fro"
double norm(const cmat &m, const std::string &s)
{
it_assert(s == "fro", "norm(): Unrecognised norm");
double E = 0.0;
for (int r = 0; r < m.rows(); ++r) {
for (int c = 0; c < m.cols(); ++c) {
E += std::norm(m(r, c));
}
}
return std::sqrt(E);
}
double variance(const cvec &v)
{
int len = v.size();
double sq_sum = 0.0;
std::complex<double> sum = 0.0;
const std::complex<double> *p = v._data();
for (int i = 0; i < len; i++, p++) {
sum += *p;
sq_sum += std::norm(*p);
}
return (double)(sq_sum - std::norm(sum) / len) / (len - 1);
}
double moment(const vec &x, const int r)
{
double m = mean(x), mr = 0;
int n = x.size();
double temp;
switch (r) {
case 1:
for (int j = 0; j < n; j++)
mr += (x(j) - m);
break;
case 2:
for (int j = 0; j < n; j++)
mr += (x(j) - m) * (x(j) - m);
break;
case 3:
for (int j = 0; j < n; j++)
mr += (x(j) - m) * (x(j) - m) * (x(j) - m);
break;
case 4:
for (int j = 0; j < n; j++) {
temp = (x(j) - m) * (x(j) - m);
temp *= temp;
mr += temp;
}
break;
default:
for (int j = 0; j < n; j++)
mr += std::pow(x(j) - m, double(r));
break;
}
return mr / n;
}
double skewness(const vec &x)
{
int n = x.size();
double k2 = variance(x) * n / (n - 1); // 2nd k-statistic
double k3 = moment(x, 3) * n * n / (n - 1) / (n - 2); //3rd k-statistic
return k3 / std::pow(k2, 3.0 / 2.0);
}
double kurtosisexcess(const vec &x)
{
int n = x.size();
double m2 = variance(x);
double m4 = moment(x, 4);
double k2 = m2 * n / (n - 1); // 2nd k-statistic
double k4 = (m4 * (n + 1) - 3 * (n - 1) * m2 * m2) * n * n / (n - 1) / (n - 2) / (n - 3); //4th k-statistic
return k4 / (k2*k2);
}
} // namespace itpp
|