File: misc_stat.cpp

package info (click to toggle)
libitpp 4.3.1-14
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 9,952 kB
  • sloc: cpp: 73,628; makefile: 661; python: 548; sh: 261
file content (232 lines) | stat: -rw-r--r-- 5,141 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
/*!
 * \file
 * \brief Miscellaneous statistics functions and classes - source file
 * \author Tony Ottosson, Johan Bergman and Adam Piatyszek
 *
 * -------------------------------------------------------------------------
 *
 * Copyright (C) 1995-2010  (see AUTHORS file for a list of contributors)
 *
 * This file is part of IT++ - a C++ library of mathematical, signal
 * processing, speech processing, and communications classes and functions.
 *
 * IT++ is free software: you can redistribute it and/or modify it under the
 * terms of the GNU General Public License as published by the Free Software
 * Foundation, either version 3 of the License, or (at your option) any
 * later version.
 *
 * IT++ is distributed in the hope that it will be useful, but WITHOUT ANY
 * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along
 * with IT++.  If not, see <http://www.gnu.org/licenses/>.
 *
 * -------------------------------------------------------------------------
 */

#include <itpp/base/algebra/svd.h>
#include <itpp/stat/misc_stat.h>


namespace itpp
{

double mean(const vec &v)
{
  return sum(v) / v.length();
}

std::complex<double> mean(const cvec &v)
{
  return sum(v) / double(v.size());
}

double mean(const svec &v)
{
  return (double)sum(v) / v.length();
}

double mean(const ivec &v)
{
  return (double)sum(v) / v.length();
}

double mean(const mat &m)
{
  return sum(sum(m)) / (m.rows()*m.cols());
}

std::complex<double> mean(const cmat &m)
{
  return sum(sum(m)) / static_cast<std::complex<double> >(m.rows()*m.cols());
}

double mean(const smat &m)
{
  return static_cast<double>(sum(sum(m))) / (m.rows()*m.cols());
}

double mean(const imat &m)
{
  return static_cast<double>(sum(sum(m))) / (m.rows()*m.cols());
}


double norm(const cvec &v)
{
  double E = 0.0;
  for (int i = 0; i < v.length(); i++)
    E += std::norm(v[i]);

  return std::sqrt(E);
}

double norm(const cvec &v, int p)
{
  double E = 0.0;
  for (int i = 0; i < v.size(); i++)
    E += std::pow(std::norm(v[i]), p / 2.0); // Yes, 2.0 is correct!

  return std::pow(E, 1.0 / p);
}

double norm(const cvec &v, const std::string &)
{
  return norm(v, 2);
}

/*
 * Calculate the p-norm of a real matrix
 * p = 1: max(svd(m))
 * p = 2: max(sum(abs(X)))
 */
double norm(const mat &m, int p)
{
  it_assert((p == 1) || (p == 2),
            "norm(): Can only calculate a matrix norm of order 1 or 2");

  if (p == 1)
    return max(sum(abs(m)));
  else
    return max(svd(m));
}

/*
 * Calculate the p-norm of a complex matrix
 * p = 1: max(svd(m))
 * p = 2: max(sum(abs(X)))
 */
double norm(const cmat &m, int p)
{
  it_assert((p == 1) || (p == 2),
            "norm(): Can only calculate a matrix norm of order 1 or 2");

  if (p == 1)
    return max(sum(abs(m)));
  else
    return max(svd(m));
}

// Calculate the Frobenius norm of matrix m for s = "fro"
double norm(const mat &m, const std::string &s)
{
  it_assert(s == "fro", "norm(): Unrecognised norm");
  double E = 0.0;
  for (int r = 0; r < m.rows(); ++r) {
    for (int c = 0; c < m.cols(); ++c) {
      E += m(r, c) * m(r, c);
    }
  }
  return std::sqrt(E);
}

// Calculate the Frobenius norm of matrix m for s = "fro"
double norm(const cmat &m, const std::string &s)
{
  it_assert(s == "fro", "norm(): Unrecognised norm");
  double E = 0.0;
  for (int r = 0; r < m.rows(); ++r) {
    for (int c = 0; c < m.cols(); ++c) {
      E += std::norm(m(r, c));
    }
  }
  return std::sqrt(E);
}


double variance(const cvec &v)
{
  int len = v.size();
  double sq_sum = 0.0;
  std::complex<double> sum = 0.0;
  const std::complex<double> *p = v._data();

  for (int i = 0; i < len; i++, p++) {
    sum += *p;
    sq_sum += std::norm(*p);
  }

  return (double)(sq_sum - std::norm(sum) / len) / (len - 1);
}

double moment(const vec &x, const int r)
{
  double m = mean(x), mr = 0;
  int n = x.size();
  double temp;

  switch (r) {
  case 1:
    for (int j = 0; j < n; j++)
      mr += (x(j) - m);
    break;
  case 2:
    for (int j = 0; j < n; j++)
      mr += (x(j) - m) * (x(j) - m);
    break;
  case 3:
    for (int j = 0; j < n; j++)
      mr += (x(j) - m) * (x(j) - m) * (x(j) - m);
    break;
  case 4:
    for (int j = 0; j < n; j++) {
      temp = (x(j) - m) * (x(j) - m);
      temp *= temp;
      mr += temp;
    }
    break;
  default:
    for (int j = 0; j < n; j++)
      mr += std::pow(x(j) - m, double(r));
    break;
  }

  return mr / n;
}


double skewness(const vec &x)
{
  int n = x.size();

  double k2 = variance(x) * n / (n - 1); // 2nd k-statistic
  double k3 = moment(x, 3) * n * n / (n - 1) / (n - 2); //3rd k-statistic

  return k3 / std::pow(k2, 3.0 / 2.0);
}

double kurtosisexcess(const vec &x)
{
  int n = x.size();
  double m2 = variance(x);
  double m4 = moment(x, 4);

  double k2 = m2 * n / (n - 1); // 2nd k-statistic
  double k4 = (m4 * (n + 1) - 3 * (n - 1) * m2 * m2) * n * n / (n - 1) / (n - 2) / (n - 3); //4th k-statistic

  return k4 / (k2*k2);
}

} // namespace itpp