File: vec.cpp

package info (click to toggle)
libitpp 4.3.1-3
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 9,536 kB
  • ctags: 7,885
  • sloc: cpp: 73,626; makefile: 655; python: 548; sh: 261
file content (657 lines) | stat: -rw-r--r-- 25,054 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
/*!
 * \file
 * \brief Templated Vector Class Implementation
 * \author Tony Ottosson, Tobias Ringstrom, Adam Piatyszek and Conrad Sanderson
 *
 * -------------------------------------------------------------------------
 *
 * Copyright (C) 1995-2010  (see AUTHORS file for a list of contributors)
 *
 * This file is part of IT++ - a C++ library of mathematical, signal
 * processing, speech processing, and communications classes and functions.
 *
 * IT++ is free software: you can redistribute it and/or modify it under the
 * terms of the GNU General Public License as published by the Free Software
 * Foundation, either version 3 of the License, or (at your option) any
 * later version.
 *
 * IT++ is distributed in the hope that it will be useful, but WITHOUT ANY
 * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along
 * with IT++.  If not, see <http://www.gnu.org/licenses/>.
 *
 * -------------------------------------------------------------------------
 */

#ifndef _MSC_VER
#  include <itpp/config.h>
#else
#  include <itpp/config_msvc.h>
#endif

#if defined (HAVE_BLAS)
#  include <itpp/base/blas.h>
#endif

#include <itpp/base/vec.h>
#include <itpp/base/converters.h>
#include <cstdio>
#include <limits>
//! \cond

namespace itpp
{

template<>
int Vec<int>::parse_token(const std::string &s) const
{
  int out;
  std::istringstream buffer(s);
  if (s.find('x', 1) != std::string::npos) {
    buffer >> std::hex >> out;
  }
  else if (((s[0] == '0')
            || (((s[0] == '-') || (s[0] == '+')) && (s[1] == '0')))
           && (s.find('8', 1) == std::string::npos)
           && (s.find('9', 1) == std::string::npos)) {
    buffer >> std::oct >> out;
  }
  else {
    buffer >> std::dec >> out;
  }
  return out;
}

template<>
double Vec<double>::parse_token(const std::string &s) const
{
  double out;
  if ((s == "NaN") || (s == "nan") || (s == "NAN")) {
    if (std::numeric_limits<double>::has_quiet_NaN)
      out = std::numeric_limits<double>::quiet_NaN();
    else if (std::numeric_limits<double>::has_signaling_NaN)
      out = std::numeric_limits<double>::signaling_NaN();
    else
      it_error("Vec<double>::set(): NaN not supported");
  }
  else if ((s =="-Inf") || (s =="-inf") || (s =="-INF")) {
    out = -std::numeric_limits<double>::infinity();
  }
  else if ((s =="Inf") || (s =="inf") || (s =="INF") ||
           (s =="+Inf") || (s =="+inf") || (s =="+INF")) {
    out = std::numeric_limits<double>::infinity();
  }
  else {
    std::istringstream buffer(s);
    buffer >> out;
    it_assert(!buffer.fail(), "Vec<double>::set(): Stream operation failed "
              "(buffer >> out)");
  }
  return out;
}


template<>
void Vec<bin>::set(const std::string &str)
{
  bool abc_format;
  std::vector<std::string> tokens = tokenize(str, abc_format);
  it_assert(!abc_format, "Vec<bin>::set(): \"a:b:c\" format string not "
            "supported for binary vectors");
  set_size(int(tokens.size()));
  for (std::vector<std::string>::size_type i = 0; i < tokens.size(); ++i) {
    std::istringstream buffer(tokens[i]);
    buffer >> data[i];
    it_assert(!buffer.fail(), "Vec<bin>::set(): Stream operation failed "
              "(buffer >> data)");
  }
}

template<>
void Vec<short int>::set(const std::string &str)
{
  // parser for "short int" is the same as for "int", so reuse it here
  ivec iv(str);
  this->operator=(to_svec(iv));
}

template<>
void Vec<int>::set(const std::string &str)
{
  bool abc_format;
  std::vector<std::string> tokens = tokenize(str, abc_format);
  // no "a:b:c" tokens, so the size of output vector is known
  if (!abc_format) {
    set_size(int(tokens.size()));
    for (std::vector<std::string>::size_type i = 0; i < tokens.size(); ++i)
      data[i] = parse_token(tokens[i]);
  }
  else {
    int pos = 0;
    set_size((tokens.size() > 20) ? int(tokens.size()) : 20);
    for (std::vector<std::string>::size_type i = 0; i < tokens.size(); ++i) {
      // check if the current token is in "a:b[:c]" format
      if (tokens[i].find(':', 1) == std::string::npos) {
        if (++pos > datasize) {
          set_size(2 * datasize, true);
        }
        data[pos-1] = parse_token(tokens[i]);
      }
      else {
        int a, b, c;
        parse_abc_token(tokens[i], a, b, c);
        if (++pos > datasize) {
          set_size(2 * datasize, true);
        }
        data[pos-1] = a;

        if ((b > 0) && (c >= a)) {
          while ((data[pos-1] + b) <= c) {
            if (++pos > datasize) {
              set_size(2 * datasize, true);
            }
            data[pos-1] = data[pos-2] + b;
          }
        }
        else if ((b < 0) && (c <= a)) {
          while ((data[pos-1] + b) >= c) {
            if (++pos > datasize) {
              set_size(2 * datasize, true);
            }
            data[pos-1] = data[pos-2] + b;
          }
        }
        else if (b == 0 && c == a) {
          break;
        }
        else {
          it_error("Vec<int>::set(): Improper data string (a:b:c)");
        }
      }
    }
    set_size(pos, true);
  } // if (!abc_format)
}


template<>
void Vec<double>::set(const std::string &str)
{
  bool abc_format;
  std::vector<std::string> tokens = tokenize(str, abc_format);
  // no "a:b:c" tokens, so the size of output vector is known
  if (!abc_format) {
    set_size(int(tokens.size()));
    for (std::vector<std::string>::size_type i = 0; i < tokens.size(); ++i)
      data[i] = parse_token(tokens[i]);
  }
  else {
    int pos = 0;
    set_size((tokens.size() > 20) ? int(tokens.size()) : 20);
    for (std::vector<std::string>::size_type i = 0; i < tokens.size(); ++i) {
      // check if the current token is in "a:b[:c]" format
      if (tokens[i].find(':', 1) == std::string::npos) {
        if (++pos > datasize) {
          set_size(2 * datasize, true);
        }
        data[pos-1] = parse_token(tokens[i]);
      }
      else {
        double a, b, c;
        parse_abc_token(tokens[i], a, b, c);
        if (++pos > datasize) {
          set_size(2 * datasize, true);
        }
        data[pos-1] = a;
        // Adding this margin fixes precision problems in e.g. "0:0.2:3",
        // where the last value was 2.8 instead of 3.
        double eps_margin = std::fabs((c - a) / b) * eps;
        if ((b > 0) && (c >= a)) {
          while ((data[pos-1] + b) <= (c + eps_margin)) {
            if (++pos > datasize) {
              set_size(2 * datasize, true);
            }
            data[pos-1] = data[pos-2] + b;
          }
        }
        else if ((b < 0) && (c <= a)) {
          while ((data[pos-1] + b) >= (c - eps_margin)) {
            if (++pos > datasize) {
              set_size(2 * datasize, true);
            }
            data[pos-1] = data[pos-2] + b;
          }
        }
        else if (b == 0 && c == a) {
          break;
        }
        else {
          it_error("Vec<double>::set(): Improper data string (a:b:c)");
        }
      }
    }
    set_size(pos, true);
  } // if (!abc_format)
}

template<>
void Vec<std::complex<double> >::set(const std::string &str)
{
  bool abc_format;
  std::vector<std::string> tokens = tokenize(str, abc_format);
  it_assert(!abc_format, "Vec<bin>::set(): \"a:b:c\" format string not "
            "supported for binary vectors");
  set_size(int(tokens.size()));
  for (std::vector<std::string>::size_type i = 0; i < tokens.size(); ++i) {
    std::istringstream buffer(tokens[i]);
    buffer >> data[i];
    it_assert(!buffer.fail(), "Vec<complex>::set(): Stream operation failed "
              "(buffer >> data)");
  }
}

#if defined(HAVE_BLAS)
template<>
double dot(const vec &v1, const vec &v2)
{
  it_assert_debug(v1.length() == v2.length(), "vec::dot(): Wrong sizes");
  int incr = 1; int v1_l = v1.length();
  return blas::ddot_(&v1_l, v1._data(), &incr, v2._data(), &incr);
}
#else
template<>
double dot(const vec &v1, const vec &v2)
{
  it_assert_debug(v1.length() == v2.length(), "vec::dot(): Wrong sizes");
  double r = 0.0;
  for (int i = 0; i < v1.length(); ++i)
    r += v1._data()[i] * v2._data()[i];
  return r;
}
#endif // HAVE_BLAS

#if defined(HAVE_BLAS)
template<>
mat outer_product(const vec &v1, const vec &v2, bool)
{
  it_assert_debug((v1.length() > 0) && (v2.length() > 0),
                  "Vec::outer_product:: Input vector of zero size");
  int v1_l = v1.length(); int v2_l = v2.length();
  mat out(v1_l, v2_l);
  out.zeros();
  double alpha = 1.0;
  int incr = 1;
  blas::dger_(&v1_l, &v2_l, &alpha, v1._data(), &incr,
              v2._data(), &incr, out._data(), &v1_l);
  return out;
}

template<>
cmat outer_product(const cvec &v1, const cvec &v2, bool hermitian)
{
  it_assert_debug((v1.length() > 0) && (v2.length() > 0),
                  "Vec::outer_product:: Input vector of zero size");
  int v1_l = v1.length(); int v2_l = v2.length();
  cmat out(v1_l, v2_l);
  out.zeros();
  std::complex<double> alpha(1.0);
  int incr = 1;
  if (hermitian) {
    blas::zgerc_(&v1_l, &v2_l, &alpha, v1._data(), &incr,
                 v2._data(), &incr, out._data(), &v1_l);
  }
  else {
    blas::zgeru_(&v1_l, &v2_l, &alpha, v1._data(), &incr,
                 v2._data(), &incr, out._data(), &v1_l);
  }
  return out;
}
#else
template<>
mat outer_product(const vec &v1, const vec &v2, bool)
{
  it_assert_debug((v1.length() > 0) && (v2.length() > 0),
                  "Vec::outer_product:: Input vector of zero size");
  int v1_l = v1.length(); int v2_l = v2.length();
  mat out(v1_l, v2_l);
  for (int i = 0; i < v1_l; ++i) {
    for (int j = 0; j < v2_l; ++j) {
      out(i, j) = v1._data()[i] * v2._data()[j];
    }
  }
  return out;
}

template<>
cmat outer_product(const cvec &v1, const cvec &v2, bool hermitian)
{
  it_assert_debug((v1.length() > 0) && (v2.length() > 0),
                  "Vec::outer_product:: Input vector of zero size");
  int v1_l = v1.length(); int v2_l = v2.length();
  cmat out(v1_l, v2_l);
  if (hermitian) {
    for (int i = 0; i < v1_l; ++i) {
      for (int j = 0; j < v2_l; ++j) {
        out(i, j) = v1._data()[i] * conj(v2._data()[j]);
      }
    }
  }
  else {
    for (int i = 0; i < v1_l; ++i) {
      for (int j = 0; j < v2_l; ++j) {
        out(i, j) = v1._data()[i] * v2._data()[j];
      }
    }
  }
  return out;
}
#endif // HAVE_BLAS


template<>
bvec Vec<std::complex<double> >::operator<=(std::complex<double>) const
{
  it_error("operator<=: not implemented for complex");
  bvec temp;
  return temp;
}

template<>
bvec Vec<std::complex<double> >::operator>(std::complex<double>) const
{
  it_error("operator>: not implemented for complex");
  bvec temp;
  return temp;
}

template<>
bvec Vec<std::complex<double> >::operator<(std::complex<double>) const
{
  it_error("operator<: not implemented for complex");
  bvec temp;
  return temp;
}

template<>
bvec Vec<std::complex<double> >::operator>=(std::complex<double>) const
{
  it_error("operator>=: not implemented for complex");
  bvec temp;
  return temp;
}

template<>
Mat<std::complex<double> > Vec<std::complex<double> >::hermitian_transpose() const
{
  Mat<std::complex<double> > temp(1, datasize);
  for (int i = 0; i < datasize; i++)
    temp(i) = std::conj(data[i]);

  return temp;
}


//---------------------------------------------------------------------
// Instantiations
//---------------------------------------------------------------------

template class ITPP_EXPORT Vec<double>;
template class ITPP_EXPORT Vec<int>;
template class ITPP_EXPORT Vec<short int>;
template class ITPP_EXPORT Vec<std::complex<double> >;
template class ITPP_EXPORT Vec<bin>;

// addition operator

template ITPP_EXPORT vec operator+(const vec &v1, const vec &v2);
template ITPP_EXPORT cvec operator+(const cvec &v1, const cvec &v2);
template ITPP_EXPORT ivec operator+(const ivec &v1, const ivec &v2);
template ITPP_EXPORT svec operator+(const svec &v1, const svec &v2);
template ITPP_EXPORT bvec operator+(const bvec &v1, const bvec &v2);

template ITPP_EXPORT vec operator+(const vec &v1, double t);
template ITPP_EXPORT cvec operator+(const cvec &v1, std::complex<double> t);
template ITPP_EXPORT ivec operator+(const ivec &v1, int t);
template ITPP_EXPORT svec operator+(const svec &v1, short t);
template ITPP_EXPORT bvec operator+(const bvec &v1, bin t);

template ITPP_EXPORT vec operator+(double t, const vec &v1);
template ITPP_EXPORT cvec operator+(std::complex<double> t, const cvec &v1);
template ITPP_EXPORT ivec operator+(int t, const ivec &v1);
template ITPP_EXPORT svec operator+(short t, const svec &v1);
template ITPP_EXPORT bvec operator+(bin t, const bvec &v1);

// subraction operator

template ITPP_EXPORT vec operator-(const vec &v1, const vec &v2);
template ITPP_EXPORT cvec operator-(const cvec &v1, const cvec &v2);
template ITPP_EXPORT ivec operator-(const ivec &v1, const ivec &v2);
template ITPP_EXPORT svec operator-(const svec &v1, const svec &v2);
template ITPP_EXPORT bvec operator-(const bvec &v1, const bvec &v2);

template ITPP_EXPORT vec operator-(const vec &v, double t);
template ITPP_EXPORT cvec operator-(const cvec &v, std::complex<double> t);
template ITPP_EXPORT ivec operator-(const ivec &v, int t);
template ITPP_EXPORT svec operator-(const svec &v, short t);
template ITPP_EXPORT bvec operator-(const bvec &v, bin t);

template ITPP_EXPORT vec operator-(double t, const vec &v);
template ITPP_EXPORT cvec operator-(std::complex<double> t, const cvec &v);
template ITPP_EXPORT ivec operator-(int t, const ivec &v);
template ITPP_EXPORT svec operator-(short t, const svec &v);
template ITPP_EXPORT bvec operator-(bin t, const bvec &v);

// unary minus

template ITPP_EXPORT vec operator-(const vec &v);
template ITPP_EXPORT cvec operator-(const cvec &v);
template ITPP_EXPORT ivec operator-(const ivec &v);
template ITPP_EXPORT svec operator-(const svec &v);
template ITPP_EXPORT bvec operator-(const bvec &v);

// multiplication operator
template ITPP_EXPORT std::complex<double> dot(const cvec &v1, const cvec &v2);
template ITPP_EXPORT int dot(const ivec &v1, const ivec &v2);
template ITPP_EXPORT short dot(const svec &v1, const svec &v2);
template ITPP_EXPORT bin dot(const bvec &v1, const bvec &v2);

template ITPP_EXPORT double operator*(const vec &v1, const vec &v2);
template ITPP_EXPORT std::complex<double> operator*(const cvec &v1, const cvec &v2);
template ITPP_EXPORT int operator*(const ivec &v1, const ivec &v2);
template ITPP_EXPORT short operator*(const svec &v1, const svec &v2);
template ITPP_EXPORT bin operator*(const bvec &v1, const bvec &v2);

template ITPP_EXPORT imat outer_product(const ivec &v1, const ivec &v2, bool hermitian);
template ITPP_EXPORT smat outer_product(const svec &v1, const svec &v2, bool hermitian);
template ITPP_EXPORT bmat outer_product(const bvec &v1, const bvec &v2, bool hermitian);

template ITPP_EXPORT vec operator*(const vec &v, double t);
template ITPP_EXPORT cvec operator*(const cvec &v, std::complex<double> t);
template ITPP_EXPORT ivec operator*(const ivec &v, int t);
template ITPP_EXPORT svec operator*(const svec &v, short t);
template ITPP_EXPORT bvec operator*(const bvec &v, bin t);

template ITPP_EXPORT vec operator*(double t, const vec &v);
template ITPP_EXPORT cvec operator*(std::complex<double> t, const cvec &v);
template ITPP_EXPORT ivec operator*(int t, const ivec &v);
template ITPP_EXPORT svec operator*(short t, const svec &v);
template ITPP_EXPORT bvec operator*(bin t, const bvec &v);

// elementwise multiplication

template ITPP_EXPORT vec elem_mult(const vec &a, const vec &b);
template ITPP_EXPORT cvec elem_mult(const cvec &a, const cvec &b);
template ITPP_EXPORT ivec elem_mult(const ivec &a, const ivec &b);
template ITPP_EXPORT svec elem_mult(const svec &a, const svec &b);
template ITPP_EXPORT bvec elem_mult(const bvec &a, const bvec &b);

template ITPP_EXPORT void elem_mult_out(const vec &a, const vec &b, vec &out);
template ITPP_EXPORT void elem_mult_out(const cvec &a, const cvec &b, cvec &out);
template ITPP_EXPORT void elem_mult_out(const ivec &a, const ivec &b, ivec &out);
template ITPP_EXPORT void elem_mult_out(const svec &a, const svec &b, svec &out);
template ITPP_EXPORT void elem_mult_out(const bvec &a, const bvec &b, bvec &out);

template ITPP_EXPORT vec elem_mult(const vec &a, const vec &b, const vec &c);
template ITPP_EXPORT cvec elem_mult(const cvec &a, const cvec &b, const cvec &c);
template ITPP_EXPORT ivec elem_mult(const ivec &a, const ivec &b, const ivec &c);
template ITPP_EXPORT svec elem_mult(const svec &a, const svec &b, const svec &c);
template ITPP_EXPORT bvec elem_mult(const bvec &a, const bvec &b, const bvec &c);

template ITPP_EXPORT void elem_mult_out(const vec &a, const vec &b, const vec &c,
                            vec &out);
template ITPP_EXPORT void elem_mult_out(const cvec &a, const cvec &b, const cvec &c,
                            cvec &out);
template ITPP_EXPORT void elem_mult_out(const ivec &a, const ivec &b, const ivec &c,
                            ivec &out);
template ITPP_EXPORT void elem_mult_out(const svec &a, const svec &b, const svec &c,
                            svec &out);
template ITPP_EXPORT void elem_mult_out(const bvec &a, const bvec &b, const bvec &c,
                            bvec &out);

template ITPP_EXPORT vec elem_mult(const vec &a, const vec &b, const vec &c,
                       const vec &d);
template ITPP_EXPORT cvec elem_mult(const cvec &a, const cvec &b, const cvec &c,
                        const cvec &d);
template ITPP_EXPORT ivec elem_mult(const ivec &a, const ivec &b, const ivec &c,
                        const ivec &d);
template ITPP_EXPORT svec elem_mult(const svec &a, const svec &b, const svec &c,
                        const svec &d);
template ITPP_EXPORT bvec elem_mult(const bvec &a, const bvec &b, const bvec &c,
                        const bvec &d);

template ITPP_EXPORT void elem_mult_out(const vec &a, const vec &b, const vec &c,
                            const vec &d, vec &out);
template ITPP_EXPORT void elem_mult_out(const cvec &a, const cvec &b, const cvec &c,
                            const cvec &d, cvec &out);
template ITPP_EXPORT void elem_mult_out(const ivec &a, const ivec &b, const ivec &c,
                            const ivec &d, ivec &out);
template ITPP_EXPORT void elem_mult_out(const svec &a, const svec &b, const svec &c,
                            const svec &d, svec &out);
template ITPP_EXPORT void elem_mult_out(const bvec &a, const bvec &b, const bvec &c,
                            const bvec &d, bvec &out);

// in-place elementwise multiplication

template ITPP_EXPORT void elem_mult_inplace(const vec &a, vec &b);
template ITPP_EXPORT void elem_mult_inplace(const cvec &a, cvec &b);
template ITPP_EXPORT void elem_mult_inplace(const ivec &a, ivec &b);
template ITPP_EXPORT void elem_mult_inplace(const svec &a, svec &b);
template ITPP_EXPORT void elem_mult_inplace(const bvec &a, bvec &b);

// elementwise multiplication followed by summation

template ITPP_EXPORT double elem_mult_sum(const vec &a, const vec &b);
template ITPP_EXPORT std::complex<double> elem_mult_sum(const cvec &a, const cvec &b);
template ITPP_EXPORT int elem_mult_sum(const ivec &a, const ivec &b);
template ITPP_EXPORT short elem_mult_sum(const svec &a, const svec &b);
template ITPP_EXPORT bin elem_mult_sum(const bvec &a, const bvec &b);

// division operator

template ITPP_EXPORT vec operator/(const vec &v, double t);
template ITPP_EXPORT cvec operator/(const cvec &v, std::complex<double> t);
template ITPP_EXPORT ivec operator/(const ivec &v, int t);
template ITPP_EXPORT svec operator/(const svec &v, short t);
template ITPP_EXPORT bvec operator/(const bvec &v, bin t);

template ITPP_EXPORT vec operator/(double t, const vec &v);
template ITPP_EXPORT cvec operator/(std::complex<double> t, const cvec &v);
template ITPP_EXPORT ivec operator/(int t, const ivec &v);
template ITPP_EXPORT svec operator/(short t, const svec &v);
template ITPP_EXPORT bvec operator/(bin t, const bvec &v);

// elementwise division operator

template ITPP_EXPORT vec elem_div(const vec &a, const vec &b);
template ITPP_EXPORT cvec elem_div(const cvec &a, const cvec &b);
template ITPP_EXPORT ivec elem_div(const ivec &a, const ivec &b);
template ITPP_EXPORT svec elem_div(const svec &a, const svec &b);
template ITPP_EXPORT bvec elem_div(const bvec &a, const bvec &b);

template ITPP_EXPORT vec elem_div(double t, const vec &v);
template ITPP_EXPORT cvec elem_div(std::complex<double> t, const cvec &v);
template ITPP_EXPORT ivec elem_div(int t, const ivec &v);
template ITPP_EXPORT svec elem_div(short t, const svec &v);
template ITPP_EXPORT bvec elem_div(bin t, const bvec &v);

template ITPP_EXPORT void elem_div_out(const vec &a, const vec &b, vec &out);
template ITPP_EXPORT void elem_div_out(const cvec &a, const cvec &b, cvec &out);
template ITPP_EXPORT void elem_div_out(const ivec &a, const ivec &b, ivec &out);
template ITPP_EXPORT void elem_div_out(const svec &a, const svec &b, svec &out);
template ITPP_EXPORT void elem_div_out(const bvec &a, const bvec &b, bvec &out);

// elementwise division followed by summation

template ITPP_EXPORT double elem_div_sum(const vec &a, const vec &b);
template ITPP_EXPORT std::complex<double> elem_div_sum(const cvec &a, const cvec &b);
template ITPP_EXPORT int elem_div_sum(const ivec &a, const ivec &b);
template ITPP_EXPORT short elem_div_sum(const svec &a, const svec &b);
template ITPP_EXPORT bin elem_div_sum(const bvec &a, const bvec &b);

// concat operator

template ITPP_EXPORT vec concat(const vec &v, double a);
template ITPP_EXPORT cvec concat(const cvec &v, std::complex<double> a);
template ITPP_EXPORT ivec concat(const ivec &v, int a);
template ITPP_EXPORT svec concat(const svec &v, short a);
template ITPP_EXPORT bvec concat(const bvec &v, bin a);

template ITPP_EXPORT vec concat(double a, const vec &v);
template ITPP_EXPORT cvec concat(std::complex<double> a, const cvec &v);
template ITPP_EXPORT ivec concat(int a, const ivec &v);
template ITPP_EXPORT svec concat(short a, const svec &v);
template ITPP_EXPORT bvec concat(bin a, const bvec &v);

template ITPP_EXPORT vec concat(const vec &v1, const vec &v2);
template ITPP_EXPORT cvec concat(const cvec &v1, const cvec &v2);
template ITPP_EXPORT ivec concat(const ivec &v1, const ivec &v2);
template ITPP_EXPORT svec concat(const svec &v1, const svec &v2);
template ITPP_EXPORT bvec concat(const bvec &v1, const bvec &v2);

template ITPP_EXPORT vec concat(const vec &v1, const vec &v2, const vec &v3);
template ITPP_EXPORT cvec concat(const cvec &v1, const cvec &v2, const cvec &v3);
template ITPP_EXPORT ivec concat(const ivec &v1, const ivec &v2, const ivec &v3);
template ITPP_EXPORT svec concat(const svec &v1, const svec &v2, const svec &v3);
template ITPP_EXPORT bvec concat(const bvec &v1, const bvec &v2, const bvec &v3);

template ITPP_EXPORT vec concat(const vec &v1, const vec &v2,
                    const vec &v3, const vec &v4);
template ITPP_EXPORT cvec concat(const cvec &v1, const cvec &v2,
                     const cvec &v3, const cvec &v4);
template ITPP_EXPORT ivec concat(const ivec &v1, const ivec &v2,
                     const ivec &v3, const ivec &v4);
template ITPP_EXPORT svec concat(const svec &v1, const svec &v2,
                     const svec &v3, const svec &v4);
template ITPP_EXPORT bvec concat(const bvec &v1, const bvec &v2,
                     const bvec &v3, const bvec &v4);

template ITPP_EXPORT vec concat(const vec &v1, const vec &v2, const vec &v3,
                    const vec &v4, const vec &v5);
template ITPP_EXPORT cvec concat(const cvec &v1, const cvec &v2, const cvec &v3,
                     const cvec &v4, const cvec &v5);
template ITPP_EXPORT ivec concat(const ivec &v1, const ivec &v2, const ivec &v3,
                     const ivec &v4, const ivec &v5);
template ITPP_EXPORT svec concat(const svec &v1, const svec &v2, const svec &v3,
                     const svec &v4, const svec &v5);
template ITPP_EXPORT bvec concat(const bvec &v1, const bvec &v2, const bvec &v3,
                     const bvec &v4, const bvec &v5);

// I/O streams

template ITPP_EXPORT std::ostream &operator<<(std::ostream& os, const vec &vect);
template ITPP_EXPORT std::ostream &operator<<(std::ostream& os, const cvec &vect);
template ITPP_EXPORT std::ostream &operator<<(std::ostream& os, const svec &vect);
template ITPP_EXPORT std::ostream &operator<<(std::ostream& os, const ivec &vect);
template ITPP_EXPORT std::ostream &operator<<(std::ostream& os, const bvec &vect);
template ITPP_EXPORT std::istream &operator>>(std::istream& is, vec &vect);
template ITPP_EXPORT std::istream &operator>>(std::istream& is, cvec &vect);
template ITPP_EXPORT std::istream &operator>>(std::istream& is, svec &vect);
template ITPP_EXPORT std::istream &operator>>(std::istream& is, ivec &vect);
template ITPP_EXPORT std::istream &operator>>(std::istream& is, bvec &vect);

} // namespace itpp

//! \endcond