1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
|
/*!
* \file
* \brief Polynomial functions
* \author Tony Ottosson, Kumar Appaiah and Adam Piatyszek
*
* -------------------------------------------------------------------------
*
* Copyright (C) 1995-2010 (see AUTHORS file for a list of contributors)
*
* This file is part of IT++ - a C++ library of mathematical, signal
* processing, speech processing, and communications classes and functions.
*
* IT++ is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* IT++ is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along
* with IT++. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include <itpp/base/itcompat.h>
#include <itpp/signal/poly.h>
#include <itpp/base/converters.h>
#include <itpp/base/algebra/eigen.h>
#include <itpp/base/specmat.h>
#include <itpp/base/matfunc.h>
namespace itpp
{
void poly(const vec &r, vec &p)
{
int n = r.size();
p.set_size(n + 1, false);
p.zeros();
p(0) = 1.0;
for (int i = 0; i < n; i++)
p.set_subvector(1, p(1, i + 1) - r(i)*p(0, i));
}
void poly(const cvec &r, cvec &p)
{
int n = r.size();
p.set_size(n + 1, false);
p.zeros();
p(0) = 1.0;
for (int i = 0; i < n; i++)
p.set_subvector(1, p(1, i + 1) - r(i)*p(0, i));
}
void roots(const vec &p, cvec &r)
{
int n = p.size(), m, l;
ivec f = find(p != 0.0);
m = f.size();
vec v = p;
mat A;
if (m > 0 && n > 1) {
v = v(f(0), f(m - 1));
l = v.size();
if (l > 1) {
A = diag(ones(l - 2), -1);
A.set_row(0, -v(1, l - 1) / v(0));
r = eig(A);
cvec d;
cmat V;
eig(A, d , V);
if (f(m - 1) < n)
r = concat(r, zeros_c(n - f(m - 1) - 1));
}
else {
r.set_size(n - f(m - 1) - 1, false);
r.zeros();
}
}
else
r.set_size(0, false);
}
void roots(const cvec &p, cvec &r)
{
int n = p.size(), m, l;
ivec f;
// find all non-zero elements
for (int i = 0; i < n; i++)
if (p(i) != 0.0)
f = concat(f, i);
m = f.size();
cvec v = p;
cmat A;
if (m > 0 && n > 1) {
v = v(f(0), f(m - 1));
l = v.size();
if (l > 1) {
A = diag(ones_c(l - 2), -1);
A.set_row(0, -v(1, l - 1) / v(0));
r = eig(A);
if (f(m - 1) < n)
r = concat(r, zeros_c(n - f(m - 1) - 1));
}
else {
r.set_size(n - f(m - 1) - 1, false);
r.zeros();
}
}
else
r.set_size(0, false);
}
vec polyval(const vec &p, const vec &x)
{
it_error_if(p.size() == 0, "polyval: size of polynomial is zero");
it_error_if(x.size() == 0, "polyval: size of input value vector is zero");
vec out(x.size());
out = p(0);
for (int i = 1; i < p.size(); i++)
out = p(i) + elem_mult(x, out);
return out;
}
cvec polyval(const vec &p, const cvec &x)
{
it_error_if(p.size() == 0, "polyval: size of polynomial is zero");
it_error_if(x.size() == 0, "polyval: size of input value vector is zero");
cvec out(x.size());
out = p(0);
for (int i = 1; i < p.size(); i++)
out = std::complex<double>(p(i)) + elem_mult(x, out);
return out;
}
cvec polyval(const cvec &p, const vec &x)
{
it_error_if(p.size() == 0, "polyval: size of polynomial is zero");
it_error_if(x.size() == 0, "polyval: size of input value vector is zero");
cvec out(x.size());
out = p(0);
for (int i = 1; i < p.size(); i++)
out = std::complex<double>(p(i)) + elem_mult(to_cvec(x), out);
return out;
}
cvec polyval(const cvec &p, const cvec &x)
{
it_error_if(p.size() == 0, "polyval: size of polynomial is zero");
it_error_if(x.size() == 0, "polyval: size of input value vector is zero");
cvec out(x.size());
out = p(0);
for (int i = 1; i < p.size(); i++)
out = p(i) + elem_mult(x, out);
return out;
}
double cheb(int n, double x)
{
it_assert((n >= 0), "cheb(): need a non-negative order n!");
if (x < 1.0 && x > -1.0) {
return std::cos(n * std::acos(x));
}
else if (x <= -1) {
return (is_even(n) ? std::cosh(n * ::acosh(-x))
: -std::cosh(n * ::acosh(-x)));
}
return std::cosh(n * ::acosh(x));
}
vec cheb(int n, const vec &x)
{
it_assert_debug(x.size() > 0, "cheb(): empty vector");
vec out(x.size());
for (int i = 0; i < x.size(); ++i) {
out(i) = cheb(n, x(i));
}
return out;
}
mat cheb(int n, const mat &x)
{
it_assert_debug((x.rows() > 0) && (x.cols() > 0), "cheb(): empty matrix");
mat out(x.rows(), x.cols());
for (int i = 0; i < x.rows(); ++i) {
for (int j = 0; j < x.cols(); ++j) {
out(i, j) = cheb(n, x(i, j));
}
}
return out;
}
} // namespace itpp
|