File: window.cpp

package info (click to toggle)
libitpp 4.3.1-3
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 9,536 kB
  • ctags: 7,885
  • sloc: cpp: 73,626; makefile: 655; python: 548; sh: 261
file content (153 lines) | stat: -rw-r--r-- 3,604 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
/*!
 * \file
 * \brief Implementation of window functions
 * \author Tony Ottosson, Tobias Ringstrom, Pal Frenger, Adam Piatyszek
 *         and Kumar Appaiah
 *
 * -------------------------------------------------------------------------
 *
 * Copyright (C) 1995-2010  (see AUTHORS file for a list of contributors)
 *
 * This file is part of IT++ - a C++ library of mathematical, signal
 * processing, speech processing, and communications classes and functions.
 *
 * IT++ is free software: you can redistribute it and/or modify it under the
 * terms of the GNU General Public License as published by the Free Software
 * Foundation, either version 3 of the License, or (at your option) any
 * later version.
 *
 * IT++ is distributed in the hope that it will be useful, but WITHOUT ANY
 * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along
 * with IT++.  If not, see <http://www.gnu.org/licenses/>.
 *
 * -------------------------------------------------------------------------
 */

#include <itpp/base/itcompat.h>
#include <itpp/signal/window.h>
#include <itpp/signal/poly.h>
#include <itpp/base/specmat.h>
#include <itpp/base/converters.h>
#include <itpp/base/math/trig_hyp.h>
#include <itpp/signal/transforms.h>
#include <itpp/base/operators.h>

namespace itpp
{


vec hamming(int n)
{
  vec t(n);

  if (n == 1)
    t(0) = 0.08;
  else
    for (int i = 0;i < n;i++)
      t[i] = (0.54 - 0.46 * std::cos(2.0 * pi * i / (n - 1)));

  return t;
}

vec hanning(int n)
{
  vec t(n);

  for (int i = 0;i < n;i++)
    t(i) = 0.5 * (1.0 - std::cos(2.0 * pi * (i + 1) / (n + 1)));

  return t;
}

// matlab version
vec hann(int n)
{
  vec t(n);

  for (int i = 0;i < n;i++)
    t(i) = 0.5 * (1.0 - std::cos(2.0 * pi * i / (n - 1)));

  return t;
}

vec blackman(int n)
{
  vec t(n);

  for (int i = 0;i < n;i++)
    t(i) = 0.42 - 0.5 * std::cos(2.0 * pi * i / (n - 1)) + 0.08 * std::cos(4.0 * pi * i / (n - 1));

  return t;
}

vec triang(int n)
{
  vec t(n);

  if (n % 2) { // Odd
    for (int i = 0; i < n / 2; i++)
      t(i) = t(n - i - 1) = 2.0 * (i + 1) / (n + 1);
    t(n / 2) = 1.0;
  }
  else
    for (int i = 0; i < n / 2; i++)
      t(i) = t(n - i - 1) = (2.0 * i + 1) / n;

  return t;
}

vec sqrt_win(int n)
{
  vec t(n);

  if (n % 2) { // Odd
    for (int i = 0; i < n / 2; i++)
      t(i) = t(n - i - 1) = std::sqrt(2.0 * (i + 1) / (n + 1));
    t(n / 2) = 1.0;
  }
  else
    for (int i = 0; i < n / 2; i++)
      t(i) = t(n - i - 1) = std::sqrt((2.0 * i + 1) / n);

  return t;
}

vec chebwin(int n, double at)
{
  it_assert((n > 0), "chebwin(): need a positive order n!");

  if (n == 1) {
    return vec("1");
  }

  at = at < 0 ? -at : at;
  // compute the parameter beta
  double beta = std::cosh(::acosh(pow10(at / 20)) / (n - 1));
  vec k = (pi / n) * linspace(0, n - 1, n);
  vec cos_k = cos(k);
  // find the window's DFT coefficients
  vec p = cheb(n - 1, beta * cos_k);

  vec w(n); // the window vector
  // Appropriate IDFT and filling up depending on even/odd n
  if (is_even(n)) {
    w = ifft_real(to_cvec(elem_mult(p, cos_k), elem_mult(p, -sin(k))));
    int half_length = n / 2 + 1;
    w = w.left(half_length) / w(1);
    w = concat(reverse(w), w.right(n - half_length));
  }
  else {
    w = ifft_real(to_cvec(p));
    int half_length = (n + 1) / 2;
    w = w.left(half_length) / w(0);
    w = concat(reverse(w), w.right(n - half_length));
  }
  return w;
}


} // namespace itpp