File: GaussianFilter.java

package info (click to toggle)
libjhlabs-filters-java 2.0.235-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, forky, sid, trixie
  • size: 1,132 kB
  • sloc: java: 16,740; xml: 17; sh: 11; makefile: 5
file content (159 lines) | stat: -rw-r--r-- 4,438 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
/*
Copyright 2006 Jerry Huxtable

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/

package com.jhlabs.image;

import java.awt.image.*;

/**
 * A filter which applies Gaussian blur to an image. This is a subclass of ConvolveFilter
 * which simply creates a kernel with a Gaussian distribution for blurring.
 * @author Jerry Huxtable
 */
public class GaussianFilter extends ConvolveFilter {

	protected float radius;
	protected Kernel kernel;
	
	/**
	 * Construct a Gaussian filter
	 */
	public GaussianFilter() {
		this(2);
	}

	/**
	 * Construct a Gaussian filter
	 * @param radius blur radius in pixels
	 */
	public GaussianFilter(float radius) {
		setRadius(radius);
	}

	/**
	 * Set the radius of the kernel, and hence the amount of blur. The bigger the radius, the longer this filter will take.
	 * @param radius the radius of the blur in pixels.
	 */
	public void setRadius(float radius) {
		this.radius = radius;
		kernel = makeKernel(radius);
	}
	
	/**
	 * Get the radius of the kernel.
	 * @return the radius
	 */
	public float getRadius() {
		return radius;
	}

    public BufferedImage filter( BufferedImage src, BufferedImage dst ) {
        int width = src.getWidth();
        int height = src.getHeight();

        if ( dst == null )
            dst = createCompatibleDestImage( src, null );

        int[] inPixels = new int[width*height];
        int[] outPixels = new int[width*height];
        src.getRGB( 0, 0, width, height, inPixels, 0, width );

		if ( radius > 0 ) {
			convolveAndTranspose(kernel, inPixels, outPixels, width, height, alpha, CLAMP_EDGES);
			convolveAndTranspose(kernel, outPixels, inPixels, height, width, alpha, CLAMP_EDGES);
		}

        dst.setRGB( 0, 0, width, height, inPixels, 0, width );
        return dst;
    }

	public static void convolveAndTranspose(Kernel kernel, int[] inPixels, int[] outPixels, int width, int height, boolean alpha, int edgeAction) {
		float[] matrix = kernel.getKernelData( null );
		int cols = kernel.getWidth();
		int cols2 = cols/2;

		for (int y = 0; y < height; y++) {
			int index = y;
			int ioffset = y*width;
			for (int x = 0; x < width; x++) {
				float r = 0, g = 0, b = 0, a = 0;
				int moffset = cols2;
				for (int col = -cols2; col <= cols2; col++) {
					float f = matrix[moffset+col];

					if (f != 0) {
						int ix = x+col;
						if ( ix < 0 ) {
							if ( edgeAction == CLAMP_EDGES )
								ix = 0;
							else if ( edgeAction == WRAP_EDGES )
								ix = (x+width) % width;
						} else if ( ix >= width) {
							if ( edgeAction == CLAMP_EDGES )
								ix = width-1;
							else if ( edgeAction == WRAP_EDGES )
								ix = (x+width) % width;
						}
						int rgb = inPixels[ioffset+ix];
						a += f * ((rgb >> 24) & 0xff);
						r += f * ((rgb >> 16) & 0xff);
						g += f * ((rgb >> 8) & 0xff);
						b += f * (rgb & 0xff);
					}
				}
				int ia = alpha ? PixelUtils.clamp((int)(a+0.5)) : 0xff;
				int ir = PixelUtils.clamp((int)(r+0.5));
				int ig = PixelUtils.clamp((int)(g+0.5));
				int ib = PixelUtils.clamp((int)(b+0.5));
				outPixels[index] = (ia << 24) | (ir << 16) | (ig << 8) | ib;
                index += height;
			}
		}
	}

	/**
	 * Make a Gaussian blur kernel.
	 */
	public static Kernel makeKernel(float radius) {
		int r = (int)Math.ceil(radius);
		int rows = r*2+1;
		float[] matrix = new float[rows];
		float sigma = radius/3;
		float sigma22 = 2*sigma*sigma;
		float sigmaPi2 = 2*ImageMath.PI*sigma;
		float sqrtSigmaPi2 = (float)Math.sqrt(sigmaPi2);
		float radius2 = radius*radius;
		float total = 0;
		int index = 0;
		for (int row = -r; row <= r; row++) {
			float distance = row*row;
			if (distance > radius2)
				matrix[index] = 0;
			else
				matrix[index] = (float)Math.exp(-(distance)/sigma22) / sqrtSigmaPi2;
			total += matrix[index];
			index++;
		}
		for (int i = 0; i < rows; i++)
			matrix[i] /= total;

		return new Kernel(rows, 1, matrix);
	}

	public String toString() {
		return "Blur/Gaussian Blur...";
	}
}