1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
|
/*
Copyright 2006 Jerry Huxtable
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package com.jhlabs.image;
/**
* A class containing static math methods useful for image processing.
*/
public class ImageMath {
public final static float PI = (float)Math.PI;
public final static float HALF_PI = (float)Math.PI/2.0f;
public final static float QUARTER_PI = (float)Math.PI/4.0f;
public final static float TWO_PI = (float)Math.PI*2.0f;
/**
* Apply a bias to a number in the unit interval, moving numbers towards 0 or 1
* according to the bias parameter.
* @param a the number to bias
* @param b the bias parameter. 0.5 means no change, smaller values bias towards 0, larger towards 1.
* @return the output value
*/
public static float bias(float a, float b) {
// return (float)Math.pow(a, Math.log(b) / Math.log(0.5));
return a/((1.0f/b-2)*(1.0f-a)+1);
}
/**
* A variant of the gamma function.
* @param a the number to apply gain to
* @param b the gain parameter. 0.5 means no change, smaller values reduce gain, larger values increase gain.
* @return the output value
*/
public static float gain(float a, float b) {
/*
float p = (float)Math.log(1.0 - b) / (float)Math.log(0.5);
if (a < .001)
return 0.0f;
else if (a > .999)
return 1.0f;
if (a < 0.5)
return (float)Math.pow(2 * a, p) / 2;
else
return 1.0f - (float)Math.pow(2 * (1. - a), p) / 2;
*/
float c = (1.0f/b-2.0f) * (1.0f-2.0f*a);
if (a < 0.5)
return a/(c+1.0f);
else
return (c-a)/(c-1.0f);
}
/**
* The step function. Returns 0 below a threshold, 1 above.
* @param a the threshold position
* @param x the input parameter
* @return the output value - 0 or 1
*/
public static float step(float a, float x) {
return (x < a) ? 0.0f : 1.0f;
}
/**
* The pulse function. Returns 1 between two thresholds, 0 outside.
* @param a the lower threshold position
* @param b the upper threshold position
* @param x the input parameter
* @return the output value - 0 or 1
*/
public static float pulse(float a, float b, float x) {
return (x < a || x >= b) ? 0.0f : 1.0f;
}
/**
* A smoothed pulse function. A cubic function is used to smooth the step between two thresholds.
* @param a1 the lower threshold position for the start of the pulse
* @param a2 the upper threshold position for the start of the pulse
* @param b1 the lower threshold position for the end of the pulse
* @param b2 the upper threshold position for the end of the pulse
* @param x the input parameter
* @return the output value
*/
public static float smoothPulse(float a1, float a2, float b1, float b2, float x) {
if (x < a1 || x >= b2)
return 0;
if (x >= a2) {
if (x < b1)
return 1.0f;
x = (x - b1) / (b2 - b1);
return 1.0f - (x*x * (3.0f - 2.0f*x));
}
x = (x - a1) / (a2 - a1);
return x*x * (3.0f - 2.0f*x);
}
/**
* A smoothed step function. A cubic function is used to smooth the step between two thresholds.
* @param a the lower threshold position
* @param b the upper threshold position
* @param x the input parameter
* @return the output value
*/
public static float smoothStep(float a, float b, float x) {
if (x < a)
return 0;
if (x >= b)
return 1;
x = (x - a) / (b - a);
return x*x * (3 - 2*x);
}
/**
* A "circle up" function. Returns y on a unit circle given 1-x. Useful for forming bevels.
* @param x the input parameter in the range 0..1
* @return the output value
*/
public static float circleUp(float x) {
x = 1-x;
return (float)Math.sqrt(1-x*x);
}
/**
* A "circle down" function. Returns 1-y on a unit circle given x. Useful for forming bevels.
* @param x the input parameter in the range 0..1
* @return the output value
*/
public static float circleDown(float x) {
return 1.0f-(float)Math.sqrt(1-x*x);
}
/**
* Clamp a value to an interval.
* @param a the lower clamp threshold
* @param b the upper clamp threshold
* @param x the input parameter
* @return the clamped value
*/
public static float clamp(float x, float a, float b) {
return (x < a) ? a : (x > b) ? b : x;
}
/**
* Clamp a value to an interval.
* @param a the lower clamp threshold
* @param b the upper clamp threshold
* @param x the input parameter
* @return the clamped value
*/
public static int clamp(int x, int a, int b) {
return (x < a) ? a : (x > b) ? b : x;
}
/**
* Return a mod b. This differs from the % operator with respect to negative numbers.
* @param a the dividend
* @param b the divisor
* @return a mod b
*/
public static double mod(double a, double b) {
int n = (int)(a/b);
a -= n*b;
if (a < 0)
return a + b;
return a;
}
/**
* Return a mod b. This differs from the % operator with respect to negative numbers.
* @param a the dividend
* @param b the divisor
* @return a mod b
*/
public static float mod(float a, float b) {
int n = (int)(a/b);
a -= n*b;
if (a < 0)
return a + b;
return a;
}
/**
* Return a mod b. This differs from the % operator with respect to negative numbers.
* @param a the dividend
* @param b the divisor
* @return a mod b
*/
public static int mod(int a, int b) {
int n = a/b;
a -= n*b;
if (a < 0)
return a + b;
return a;
}
/**
* The triangle function. Returns a repeating triangle shape in the range 0..1 with wavelength 1.0
* @param x the input parameter
* @return the output value
*/
public static float triangle(float x) {
float r = mod(x, 1.0f);
return 2.0f*(r < 0.5 ? r : 1-r);
}
/**
* Linear interpolation.
* @param t the interpolation parameter
* @param a the lower interpolation range
* @param b the upper interpolation range
* @return the interpolated value
*/
public static float lerp(float t, float a, float b) {
return a + t * (b - a);
}
/**
* Linear interpolation.
* @param t the interpolation parameter
* @param a the lower interpolation range
* @param b the upper interpolation range
* @return the interpolated value
*/
public static int lerp(float t, int a, int b) {
return (int)(a + t * (b - a));
}
/**
* Linear interpolation of ARGB values.
* @param t the interpolation parameter
* @param rgb1 the lower interpolation range
* @param rgb2 the upper interpolation range
* @return the interpolated value
*/
public static int mixColors(float t, int rgb1, int rgb2) {
int a1 = (rgb1 >> 24) & 0xff;
int r1 = (rgb1 >> 16) & 0xff;
int g1 = (rgb1 >> 8) & 0xff;
int b1 = rgb1 & 0xff;
int a2 = (rgb2 >> 24) & 0xff;
int r2 = (rgb2 >> 16) & 0xff;
int g2 = (rgb2 >> 8) & 0xff;
int b2 = rgb2 & 0xff;
a1 = lerp(t, a1, a2);
r1 = lerp(t, r1, r2);
g1 = lerp(t, g1, g2);
b1 = lerp(t, b1, b2);
return (a1 << 24) | (r1 << 16) | (g1 << 8) | b1;
}
/**
* Bilinear interpolation of ARGB values.
* @param x the X interpolation parameter 0..1
* @param y the y interpolation parameter 0..1
* @param rgb array of four ARGB values in the order NW, NE, SW, SE
* @return the interpolated value
*/
public static int bilinearInterpolate(float x, float y, int nw, int ne, int sw, int se) {
float m0, m1;
int a0 = (nw >> 24) & 0xff;
int r0 = (nw >> 16) & 0xff;
int g0 = (nw >> 8) & 0xff;
int b0 = nw & 0xff;
int a1 = (ne >> 24) & 0xff;
int r1 = (ne >> 16) & 0xff;
int g1 = (ne >> 8) & 0xff;
int b1 = ne & 0xff;
int a2 = (sw >> 24) & 0xff;
int r2 = (sw >> 16) & 0xff;
int g2 = (sw >> 8) & 0xff;
int b2 = sw & 0xff;
int a3 = (se >> 24) & 0xff;
int r3 = (se >> 16) & 0xff;
int g3 = (se >> 8) & 0xff;
int b3 = se & 0xff;
float cx = 1.0f-x;
float cy = 1.0f-y;
m0 = cx * a0 + x * a1;
m1 = cx * a2 + x * a3;
int a = (int)(cy * m0 + y * m1);
m0 = cx * r0 + x * r1;
m1 = cx * r2 + x * r3;
int r = (int)(cy * m0 + y * m1);
m0 = cx * g0 + x * g1;
m1 = cx * g2 + x * g3;
int g = (int)(cy * m0 + y * m1);
m0 = cx * b0 + x * b1;
m1 = cx * b2 + x * b3;
int b = (int)(cy * m0 + y * m1);
return (a << 24) | (r << 16) | (g << 8) | b;
}
/**
* Return the NTSC gray level of an RGB value.
* @param rgb1 the input pixel
* @return the gray level (0-255)
*/
public static int brightnessNTSC(int rgb) {
int r = (rgb >> 16) & 0xff;
int g = (rgb >> 8) & 0xff;
int b = rgb & 0xff;
return (int)(r*0.299f + g*0.587f + b*0.114f);
}
// Catmull-Rom splines
private final static float m00 = -0.5f;
private final static float m01 = 1.5f;
private final static float m02 = -1.5f;
private final static float m03 = 0.5f;
private final static float m10 = 1.0f;
private final static float m11 = -2.5f;
private final static float m12 = 2.0f;
private final static float m13 = -0.5f;
private final static float m20 = -0.5f;
private final static float m21 = 0.0f;
private final static float m22 = 0.5f;
private final static float m23 = 0.0f;
private final static float m30 = 0.0f;
private final static float m31 = 1.0f;
private final static float m32 = 0.0f;
private final static float m33 = 0.0f;
/**
* Compute a Catmull-Rom spline.
* @param x the input parameter
* @param numKnots the number of knots in the spline
* @param knots the array of knots
* @return the spline value
*/
public static float spline(float x, int numKnots, float[] knots) {
int span;
int numSpans = numKnots - 3;
float k0, k1, k2, k3;
float c0, c1, c2, c3;
if (numSpans < 1)
throw new IllegalArgumentException("Too few knots in spline");
x = clamp(x, 0, 1) * numSpans;
span = (int)x;
if (span > numKnots-4)
span = numKnots-4;
x -= span;
k0 = knots[span];
k1 = knots[span+1];
k2 = knots[span+2];
k3 = knots[span+3];
c3 = m00*k0 + m01*k1 + m02*k2 + m03*k3;
c2 = m10*k0 + m11*k1 + m12*k2 + m13*k3;
c1 = m20*k0 + m21*k1 + m22*k2 + m23*k3;
c0 = m30*k0 + m31*k1 + m32*k2 + m33*k3;
return ((c3*x + c2)*x + c1)*x + c0;
}
/**
* Compute a Catmull-Rom spline, but with variable knot spacing.
* @param x the input parameter
* @param numKnots the number of knots in the spline
* @param xknots the array of knot x values
* @param yknots the array of knot y values
* @return the spline value
*/
public static float spline(float x, int numKnots, int[] xknots, int[] yknots) {
int span;
int numSpans = numKnots - 3;
float k0, k1, k2, k3;
float c0, c1, c2, c3;
if (numSpans < 1)
throw new IllegalArgumentException("Too few knots in spline");
for (span = 0; span < numSpans; span++)
if (xknots[span+1] > x)
break;
if (span > numKnots-3)
span = numKnots-3;
float t = (float)(x-xknots[span]) / (xknots[span+1]-xknots[span]);
span--;
if (span < 0) {
span = 0;
t = 0;
}
k0 = yknots[span];
k1 = yknots[span+1];
k2 = yknots[span+2];
k3 = yknots[span+3];
c3 = m00*k0 + m01*k1 + m02*k2 + m03*k3;
c2 = m10*k0 + m11*k1 + m12*k2 + m13*k3;
c1 = m20*k0 + m21*k1 + m22*k2 + m23*k3;
c0 = m30*k0 + m31*k1 + m32*k2 + m33*k3;
return ((c3*t + c2)*t + c1)*t + c0;
}
/**
* Compute a Catmull-Rom spline for RGB values.
* @param x the input parameter
* @param numKnots the number of knots in the spline
* @param knots the array of knots
* @return the spline value
*/
public static int colorSpline(float x, int numKnots, int[] knots) {
int span;
int numSpans = numKnots - 3;
float k0, k1, k2, k3;
float c0, c1, c2, c3;
if (numSpans < 1)
throw new IllegalArgumentException("Too few knots in spline");
x = clamp(x, 0, 1) * numSpans;
span = (int)x;
if (span > numKnots-4)
span = numKnots-4;
x -= span;
int v = 0;
for (int i = 0; i < 4; i++) {
int shift = i * 8;
k0 = (knots[span] >> shift) & 0xff;
k1 = (knots[span+1] >> shift) & 0xff;
k2 = (knots[span+2] >> shift) & 0xff;
k3 = (knots[span+3] >> shift) & 0xff;
c3 = m00*k0 + m01*k1 + m02*k2 + m03*k3;
c2 = m10*k0 + m11*k1 + m12*k2 + m13*k3;
c1 = m20*k0 + m21*k1 + m22*k2 + m23*k3;
c0 = m30*k0 + m31*k1 + m32*k2 + m33*k3;
int n = (int)(((c3*x + c2)*x + c1)*x + c0);
if (n < 0)
n = 0;
else if (n > 255)
n = 255;
v |= n << shift;
}
return v;
}
/**
* Compute a Catmull-Rom spline for RGB values, but with variable knot spacing.
* @param x the input parameter
* @param numKnots the number of knots in the spline
* @param xknots the array of knot x values
* @param yknots the array of knot y values
* @return the spline value
*/
public static int colorSpline(int x, int numKnots, int[] xknots, int[] yknots) {
int span;
int numSpans = numKnots - 3;
float k0, k1, k2, k3;
float c0, c1, c2, c3;
if (numSpans < 1)
throw new IllegalArgumentException("Too few knots in spline");
for (span = 0; span < numSpans; span++)
if (xknots[span+1] > x)
break;
if (span > numKnots-3)
span = numKnots-3;
float t = (float)(x-xknots[span]) / (xknots[span+1]-xknots[span]);
span--;
if (span < 0) {
span = 0;
t = 0;
}
int v = 0;
for (int i = 0; i < 4; i++) {
int shift = i * 8;
k0 = (yknots[span] >> shift) & 0xff;
k1 = (yknots[span+1] >> shift) & 0xff;
k2 = (yknots[span+2] >> shift) & 0xff;
k3 = (yknots[span+3] >> shift) & 0xff;
c3 = m00*k0 + m01*k1 + m02*k2 + m03*k3;
c2 = m10*k0 + m11*k1 + m12*k2 + m13*k3;
c1 = m20*k0 + m21*k1 + m22*k2 + m23*k3;
c0 = m30*k0 + m31*k1 + m32*k2 + m33*k3;
int n = (int)(((c3*t + c2)*t + c1)*t + c0);
if (n < 0)
n = 0;
else if (n > 255)
n = 255;
v |= n << shift;
}
return v;
}
/**
* An implementation of Fant's resampling algorithm.
* @param source the source pixels
* @param dest the destination pixels
* @param length the length of the scanline to resample
* @param offset the start offset into the arrays
* @param stride the offset between pixels in consecutive rows
* @param out an array of output positions for each pixel
*/
public static void resample(int[] source, int[] dest, int length, int offset, int stride, float[] out) {
int i, j;
float intensity;
float sizfac;
float inSegment;
float outSegment;
int a, r, g, b, nextA, nextR, nextG, nextB;
float aSum, rSum, gSum, bSum;
float[] in;
int srcIndex = offset;
int destIndex = offset;
int lastIndex = source.length;
int rgb;
in = new float[length+2];
i = 0;
for (j = 0; j < length; j++) {
while (out[i+1] < j)
i++;
in[j] = i + (float) (j - out[i]) / (out[i + 1] - out[i]);
// in[j] = ImageMath.clamp( in[j], 0, length-1 );
}
in[length] = length;
in[length+1] = length;
inSegment = 1.0f;
outSegment = in[1];
sizfac = outSegment;
aSum = rSum = gSum = bSum = 0.0f;
rgb = source[srcIndex];
a = (rgb >> 24) & 0xff;
r = (rgb >> 16) & 0xff;
g = (rgb >> 8) & 0xff;
b = rgb & 0xff;
srcIndex += stride;
rgb = source[srcIndex];
nextA = (rgb >> 24) & 0xff;
nextR = (rgb >> 16) & 0xff;
nextG = (rgb >> 8) & 0xff;
nextB = rgb & 0xff;
srcIndex += stride;
i = 1;
while (i <= length) {
float aIntensity = inSegment * a + (1.0f - inSegment) * nextA;
float rIntensity = inSegment * r + (1.0f - inSegment) * nextR;
float gIntensity = inSegment * g + (1.0f - inSegment) * nextG;
float bIntensity = inSegment * b + (1.0f - inSegment) * nextB;
if (inSegment < outSegment) {
aSum += (aIntensity * inSegment);
rSum += (rIntensity * inSegment);
gSum += (gIntensity * inSegment);
bSum += (bIntensity * inSegment);
outSegment -= inSegment;
inSegment = 1.0f;
a = nextA;
r = nextR;
g = nextG;
b = nextB;
if (srcIndex < lastIndex)
rgb = source[srcIndex];
nextA = (rgb >> 24) & 0xff;
nextR = (rgb >> 16) & 0xff;
nextG = (rgb >> 8) & 0xff;
nextB = rgb & 0xff;
srcIndex += stride;
} else {
aSum += (aIntensity * outSegment);
rSum += (rIntensity * outSegment);
gSum += (gIntensity * outSegment);
bSum += (bIntensity * outSegment);
dest[destIndex] =
((int)Math.min(aSum/sizfac, 255) << 24) |
((int)Math.min(rSum/sizfac, 255) << 16) |
((int)Math.min(gSum/sizfac, 255) << 8) |
(int)Math.min(bSum/sizfac, 255);
destIndex += stride;
aSum = rSum = gSum = bSum = 0.0f;
inSegment -= outSegment;
outSegment = in[i+1] - in[i];
sizfac = outSegment;
i++;
}
}
}
}
|