File: LensBlurFilter.java

package info (click to toggle)
libjhlabs-filters-java 2.0.235-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, forky, sid, trixie
  • size: 1,132 kB
  • sloc: java: 16,740; xml: 17; sh: 11; makefile: 5
file content (302 lines) | stat: -rw-r--r-- 9,330 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
/*
Copyright 2006 Jerry Huxtable

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/

package com.jhlabs.image;

import java.awt.*;
import java.awt.geom.*;
import java.awt.image.*;
import java.awt.color.*;
import com.jhlabs.math.*;

/**
 * A filter which use FFTs to simulate lens blur on an image
 */
public class LensBlurFilter extends AbstractBufferedImageOp {
    
    private float radius = 10;
	private float bloom = 2;
	private float bloomThreshold = 192;
    private float angle = 0;
	private int sides = 5;

	/**
	 * Set the radius of the kernel, and hence the amount of blur.
	 * @param radius the radius of the blur in pixels.
	 */
	public void setRadius(float radius) {
		this.radius = radius;
	}
	
	/**
	 * Get the radius of the kernel.
	 * @return the radius
	 */
	public float getRadius() {
		return radius;
	}

	public void setSides(int sides) {
		this.sides = sides;
	}
	
	public int getSides() {
		return sides;
	}

	public void setBloom(float bloom) {
		this.bloom = bloom;
	}
	
	public float getBloom() {
		return bloom;
	}

	public void setBloomThreshold(float bloomThreshold) {
		this.bloomThreshold = bloomThreshold;
	}
	
	public float getBloomThreshold() {
		return bloomThreshold;
	}


    public BufferedImage filter( BufferedImage src, BufferedImage dst ) {
        int width = src.getWidth();
        int height = src.getHeight();
        int rows = 1, cols = 1;
        int log2rows = 0, log2cols = 0;
        int iradius = (int)Math.ceil(radius);
        int tileWidth = 128;
        int tileHeight = tileWidth;

        int adjustedWidth = (int)(width + iradius*2);
        int adjustedHeight = (int)(height + iradius*2);

		tileWidth = iradius < 32 ? Math.min(128, width+2*iradius) : Math.min(256, width+2*iradius);
		tileHeight = iradius < 32 ? Math.min(128, height+2*iradius) : Math.min(256, height+2*iradius);

        if ( dst == null )
            dst = new BufferedImage( width, height, BufferedImage.TYPE_INT_ARGB );

        while (rows < tileHeight) {
            rows *= 2;
            log2rows++;
        }
        while (cols < tileWidth) {
            cols *= 2;
            log2cols++;
        }
        int w = cols;
        int h = rows;

		tileWidth = w;
		tileHeight = h;//FIXME-tileWidth, w, and cols are always all the same

        FFT fft = new FFT( Math.max(log2rows, log2cols) );

        int[] rgb = new int[w*h];
        float[][] mask = new float[2][w*h];
        float[][] gb = new float[2][w*h];
        float[][] ar = new float[2][w*h];

        // Create the kernel
		double polyAngle = Math.PI/sides;
		double polyScale = 1.0f / Math.cos(polyAngle);
		double r2 = radius*radius;
		double rangle = Math.toRadians(angle);
		float total = 0;
        int i = 0;
        for ( int y = 0; y < h; y++ ) {
            for ( int x = 0; x < w; x++ ) {
                double dx = x-w/2f;
                double dy = y-h/2f;
				double r = dx*dx+dy*dy;
				double f = r < r2 ? 1 : 0;
				if (f != 0) {
					r = Math.sqrt(r);
					if ( sides != 0 ) {
						double a = Math.atan2(dy, dx)+rangle;
						a = ImageMath.mod(a, polyAngle*2)-polyAngle;
						f = Math.cos(a) * polyScale;
					} else
						f = 1;
					f = f*r < radius ? 1 : 0;
				}
				total += (float)f;

				mask[0][i] = (float)f;
                mask[1][i] = 0;
                i++;
            }
        }
		
        // Normalize the kernel
        i = 0;
        for ( int y = 0; y < h; y++ ) {
            for ( int x = 0; x < w; x++ ) {
                mask[0][i] /= total;
                i++;
            }
        }

        fft.transform2D( mask[0], mask[1], w, h, true );

        for ( int tileY = -iradius; tileY < height; tileY += tileHeight-2*iradius ) {
            for ( int tileX = -iradius; tileX < width; tileX += tileWidth-2*iradius ) {
//                System.out.println("Tile: "+tileX+" "+tileY+" "+tileWidth+" "+tileHeight);

                // Clip the tile to the image bounds
                int tx = tileX, ty = tileY, tw = tileWidth, th = tileHeight;
                int fx = 0, fy = 0;
                if ( tx < 0 ) {
                    tw += tx;
                    fx -= tx;
                    tx = 0;
                }
                if ( ty < 0 ) {
                    th += ty;
                    fy -= ty;
                    ty = 0;
                }
                if ( tx+tw > width )
                    tw = width-tx;
                if ( ty+th > height )
                    th = height-ty;
                src.getRGB( tx, ty, tw, th, rgb, fy*w+fx, w );

                // Create a float array from the pixels. Any pixels off the edge of the source image get duplicated from the edge.
                i = 0;
                for ( int y = 0; y < h; y++ ) {
                    int imageY = y+tileY;
                    int j;
                    if ( imageY < 0 )
                        j = fy;
                    else if ( imageY > height )
                        j = fy+th-1;
                    else
                        j = y;
                    j *= w;
                    for ( int x = 0; x < w; x++ ) {
                        int imageX = x+tileX;
                        int k;
                        if ( imageX < 0 )
                            k = fx;
                        else if ( imageX > width )
                            k = fx+tw-1;
                        else
                            k = x;
                        k += j;

                        ar[0][i] = ((rgb[k] >> 24) & 0xff);
                        float r = ((rgb[k] >> 16) & 0xff);
                        float g = ((rgb[k] >> 8) & 0xff);
                        float b = (rgb[k] & 0xff);

						// Bloom...
                        if ( r > bloomThreshold )
							r *= bloom;
//							r = bloomThreshold + (r-bloomThreshold) * bloom;
                        if ( g > bloomThreshold )
							g *= bloom;
//							g = bloomThreshold + (g-bloomThreshold) * bloom;
                        if ( b > bloomThreshold )
							b *= bloom;
//							b = bloomThreshold + (b-bloomThreshold) * bloom;

						ar[1][i] = r;
						gb[0][i] = g;
						gb[1][i] = b;

                        i++;
                        k++;
                    }
                }

                // Transform into frequency space
                fft.transform2D( ar[0], ar[1], cols, rows, true );
                fft.transform2D( gb[0], gb[1], cols, rows, true );

                // Multiply the transformed pixels by the transformed kernel
                i = 0;
                for ( int y = 0; y < h; y++ ) {
                    for ( int x = 0; x < w; x++ ) {
                        float re = ar[0][i];
                        float im = ar[1][i];
                        float rem = mask[0][i];
                        float imm = mask[1][i];
                        ar[0][i] = re*rem-im*imm;
                        ar[1][i] = re*imm+im*rem;
                        
                        re = gb[0][i];
                        im = gb[1][i];
                        gb[0][i] = re*rem-im*imm;
                        gb[1][i] = re*imm+im*rem;
                        i++;
                    }
                }

                // Transform back
                fft.transform2D( ar[0], ar[1], cols, rows, false );
                fft.transform2D( gb[0], gb[1], cols, rows, false );

                // Convert back to RGB pixels, with quadrant remapping
                int row_flip = w >> 1;
                int col_flip = h >> 1;
                int index = 0;

                //FIXME-don't bother converting pixels off image edges
                for ( int y = 0; y < w; y++ ) {
                    int ym = y ^ row_flip;
                    int yi = ym*cols;
                    for ( int x = 0; x < w; x++ ) {
                        int xm = yi + (x ^ col_flip);
                        int a = (int)ar[0][xm];
                        int r = (int)ar[1][xm];
                        int g = (int)gb[0][xm];
                        int b = (int)gb[1][xm];

						// Clamp high pixels due to blooming
						if ( r > 255 )
							r = 255;
						if ( g > 255 )
							g = 255;
						if ( b > 255 )
							b = 255;
                        int argb = (a << 24) | (r << 16) | (g << 8) | b;
                        rgb[index++] = argb;
                    }
                }

                // Clip to the output image
                tx = tileX+iradius;
                ty = tileY+iradius;
                tw = tileWidth-2*iradius;
                th = tileHeight-2*iradius;
                if ( tx+tw > width )
                    tw = width-tx;
                if ( ty+th > height )
                    th = height-ty;
                dst.setRGB( tx, ty, tw, th, rgb, iradius*w+iradius, w );
            }
        }
        return dst;
    }

	public String toString() {
		return "Blur/Lens Blur...";
	}
}