1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
|
#include <math.h>
#include <cassert>
#include <stdexcept>
#include <vector>
#include <ggml.h>
#include <llama.h>
#include <argeo/jni/argeo_jni.h>
#include "org_argeo_jjml_llm_LlamaCppBatchProcessor.h" // IWYU pragma: keep
#include "jjml_llm.h"
#include "org_argeo_jjml_llm_.h"
static std::vector<llama_token_data> jjml_get_logits(llama_context *ctx,
int idx) {
const auto *logits = llama_get_logits_ith(ctx, idx);
const llama_vocab *vocab = llama_model_get_vocab(llama_get_model(ctx));
const int n_vocab = llama_vocab_n_tokens(vocab);
std::vector<llama_token_data> cur;
cur.resize(n_vocab);
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
cur[token_id] = llama_token_data { token_id, logits[token_id], 0.0f };
}
return cur;
}
static llama_token jjml_check_grammar(llama_context *ctx, int idx,
llama_sampler *chain, llama_sampler *grmr, llama_token id) {
// check if it the sampled token fits the grammar
{
llama_token_data single_token_data = { id, 1.0f, 0.0f };
llama_token_data_array single_token_data_array = { &single_token_data,
1, -1, false };
llama_sampler_apply(grmr, &single_token_data_array);
const bool is_valid = single_token_data_array.data[0].logit != -INFINITY;
if (is_valid) {
return id;
}
}
// resampling:
// if the token is not valid, sample again, but first apply the grammar sampler and then the sampling chain
std::vector<llama_token_data> cur = jjml_get_logits(ctx, idx);
llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false, };
llama_sampler_apply(grmr, &cur_p);
llama_sampler_apply(chain, &cur_p);
GGML_ASSERT(
cur_p.selected != -1
&& "no selected token during re-sampling - check your sampling configuration");
llama_token res = cur_p.data[cur_p.selected].id;
return res;
}
static jint jjml_llm_batch_processor_read(llama_context *ctx,
llama_sampler *smpl, llama_sampler *grmr, llama_pos cur_pos,
std::vector<void*> outputs, const int outputs_count, JNIEnv *env,
jintArray offsets, jintArray lengths, jintArray sequenceIds,
jintArray outputIds, jobject completionHandler) {
const llama_vocab *vocab = llama_model_get_vocab(llama_get_model(ctx));
const uint32_t NO_OUTPUT_ID = llama_n_batch(ctx);
const int n_parallel = env->GetArrayLength(sequenceIds);
assert(n_parallel > 0 && "Sequence count");
jint *arr = env->GetIntArrayElements(sequenceIds, nullptr);
std::vector<llama_seq_id> sequence_ids(n_parallel);
for (int i = 0; i < n_parallel; i++) {
sequence_ids[i] = static_cast<llama_seq_id>(arr[i]);
}
env->ReleaseIntArrayElements(sequenceIds, arr, 0);
auto *output_ids = reinterpret_cast<int32_t*>(env->GetIntArrayElements(
outputIds, nullptr));
assert(outputs_count == n_parallel && "As many buffers as sequences");
assert(outputs_count > 0);
assert(lengths != nullptr);
assert(env->GetArrayLength(lengths) == outputs_count);
jint *seq_tokens_size = env->GetIntArrayElements(lengths, nullptr);
assert(offsets != nullptr);
assert(env->GetArrayLength(offsets) == outputs_count);
jint *seq_offsets = env->GetIntArrayElements(offsets, nullptr);
std::vector<llama_token*> seq_tokens(outputs_count);
for (int i = 0; i < outputs_count; i++) {
void *output = outputs[i];
if (output != nullptr) {
seq_tokens[i] = static_cast<llama_token*>(output) + seq_offsets[i];
} else {
seq_tokens[i] = nullptr;
}
}
int max_decodes = 0;
for (int i = 0; i < n_parallel; i++) {
if (seq_tokens_size[i] > max_decodes)
max_decodes = seq_tokens_size[i];
}
PERF_BEGIN();
int next_idx = 0;
llama_batch batch = llama_batch_init(n_parallel, 0, n_parallel);
// FIXME deal more precisely with the upper limit
int n_predict = cur_pos + max_decodes;
bool all_eog = true;
while (cur_pos <= n_predict) {
// prepare the next batch
jjml_llm_batch_clear(batch);
// sample the next token for each parallel sequence / stream
for (int32_t i = 0; i < n_parallel; ++i) {
if (seq_tokens[i] == nullptr) // no output available
continue;
if (output_ids[i] == NO_OUTPUT_ID) // already finished
continue;
PERF_BEGIN();
llama_token new_token_id;
if (grmr == nullptr) {
new_token_id = llama_sampler_sample(smpl, ctx, output_ids[i]);
} else { // grammar handling require lower-level methods
std::vector<llama_token_data> cur = jjml_get_logits(ctx,
output_ids[i]);
llama_token_data_array cur_p = { cur.data(), cur.size(), -1,
false, };
llama_sampler_apply(smpl, &cur_p);
llama_token candidate = cur_p.data[cur_p.selected].id;
new_token_id = jjml_check_grammar(ctx, output_ids[i], smpl,
grmr, candidate);
llama_sampler_accept(grmr, new_token_id);
llama_sampler_accept(smpl, new_token_id);
} //
PERF_END("sampling");
bool is_eog = llama_vocab_is_eog(vocab, new_token_id);
// is it an end of generation? -> mark the stream as finished
if (is_eog //
|| next_idx == seq_tokens_size[i] //
|| cur_pos == n_predict //
) {
if (is_eog)
output_ids[i] = NO_OUTPUT_ID;
jclass Integer = argeo::jni::find_jclass(env,
"java/lang/Integer");
jobject completionHandlerResult = env->CallStaticObjectMethod(
Integer, Integer__valueOf, next_idx);
jobject completionHandlerAttachment =
env->CallStaticObjectMethod(Integer, Integer__valueOf,
i);
// call completion handler
env->CallVoidMethod(completionHandler,
CompletionHandler__completed, completionHandlerResult,
completionHandlerAttachment);
if (!is_eog) // at least one could have continued
all_eog = false;
continue;
}
// std::cerr << cur_pos << "\t" << i << "\t" << new_token_id
// << std::endl;
assert(next_idx < seq_tokens_size[i] && "No overflow");
seq_tokens[i][next_idx] = new_token_id;
output_ids[i] = batch.n_tokens;
// push this new token for next evaluation
jjml_llm_batch_add(batch, new_token_id, cur_pos,
{ sequence_ids[i] }, true);
}
next_idx++;
// all streams are finished
if (batch.n_tokens == 0) {
break;
}
cur_pos += 1;
// evaluate the current batch with the transformer model
if (llama_decode(ctx, batch))
throw std::runtime_error("Decode failed");
}
// clean up
// !! dereference what Java owns before batch is freed
// for (size_t i = 0; i < n_parallel; i++) {
// batch.seq_id[i] = nullptr;
// }
llama_batch_free(batch);
PERF_END(__func__);
// clean up
env->ReleaseIntArrayElements(offsets, reinterpret_cast<jint*>(seq_offsets),
0);
env->ReleaseIntArrayElements(lengths,
reinterpret_cast<jint*>(seq_tokens_size), 0);
env->ReleaseIntArrayElements(outputIds, reinterpret_cast<jint*>(output_ids),
0);
// TODO assert consistency of context position with regard to the output buffers sizes
return cur_pos;
}
JNIEXPORT jint JNICALL Java_org_argeo_jjml_llm_LlamaCppBatchProcessor_doRead(
JNIEnv *env, jclass, jlong contextPointer, jlong samplerPtr,
jlong grammarSamplerPtr, jint contextPosition,
jobjectArray outputBuffers, jintArray offsets, jintArray lengths,
jintArray sequenceIds, jintArray outputIds, jobject completionHandler) {
auto *ctx = argeo::jni::as_pointer<llama_context*>(contextPointer);
auto *smpl = argeo::jni::as_pointer<llama_sampler*>(samplerPtr);
auto *grmr =
grammarSamplerPtr != 0 ?
argeo::jni::as_pointer<llama_sampler*>(grammarSamplerPtr) :
nullptr;
llama_pos cur_pos = static_cast<llama_pos>(contextPosition);
int outputs_count = env->GetArrayLength(outputBuffers);
std::vector<void*> outputs(outputs_count);
for (int i = 0; i < outputs_count; i++) {
jobject buf = env->GetObjectArrayElement(outputBuffers, i);
if (buf != nullptr) {
outputs[i] = env->GetDirectBufferAddress(buf);
} else {
outputs[i] = nullptr;
}
}
jint newPosition;
try {
newPosition = jjml_llm_batch_processor_read(ctx, smpl, grmr, cur_pos,
outputs, outputs_count, env, offsets, lengths, sequenceIds,
outputIds, completionHandler);
} catch (std::exception &ex) {
argeo::jni::throw_to_java(env, ex);
}
return newPosition;
}
JNIEXPORT jint JNICALL Java_org_argeo_jjml_llm_LlamaCppBatchProcessor_doReadToArrays(
JNIEnv *env, jclass, jlong contextPointer, jlong samplerPtr,
jlong grammarSamplerPtr, jint contextPosition,
jobjectArray outputArrays, jintArray offsets, jintArray lengths,
jintArray sequenceIds, jintArray outputIds, jobject completionHandler) {
auto *ctx = argeo::jni::as_pointer<llama_context*>(contextPointer);
auto *smpl = argeo::jni::as_pointer<llama_sampler*>(samplerPtr);
auto *grmr =
grammarSamplerPtr != 0 ?
argeo::jni::as_pointer<llama_sampler*>(grammarSamplerPtr) :
nullptr;
llama_pos cur_pos = static_cast<llama_pos>(contextPosition);
int outputs_count = env->GetArrayLength(outputArrays);
std::vector<void*> outputs(outputs_count);
for (int i = 0; i < outputs_count; i++) {
jintArray arr = (jintArray) env->GetObjectArrayElement(outputArrays, i);
if (arr != nullptr) {
outputs[i] = env->GetPrimitiveArrayCritical(arr, nullptr);
} else {
outputs[i] = nullptr;
}
}
jint newPosition;
try {
newPosition = jjml_llm_batch_processor_read(ctx, smpl, grmr, cur_pos,
outputs, outputs_count, env, offsets, lengths, sequenceIds,
outputIds, completionHandler);
} catch (std::exception &ex) {
argeo::jni::throw_to_java(env, ex);
}
// clean up
for (int i = 0; i < outputs_count; i++) {
jintArray arr = (jintArray) env->GetObjectArrayElement(outputArrays, i);
if (arr != nullptr) {
env->ReleasePrimitiveArrayCritical(arr, outputs[i], 0);
}
}
return newPosition;
}
|