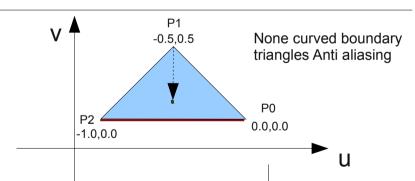
Simple Quadratic, n=2

where D=3, n=2 Knot vector=[0 0 0 1 1 1]

$$v = P(u)$$


If interior is required, we change sign of P1v \rightarrow P1(0.5,-0.5), wont affect the algorithm

Let
$$A=(u,v)=(u,P(u))$$

Let $B=(u,abs(v)) \rightarrow current$ pixel fragment

kill

Since P0P2 is a boundary edge \rightarrow the boundary edge case can be defined by signs different of the P2u.

Hence
if (u < 0)
 set color = c;
 Let P1A = (abs(u), 0)
P1B = (abs(u), v)
 color.alpha = func(P1B,P1A,0)

Note: with this addition our shader will be able to handle the boundary triangles and Interior triangles.

No need for shader switching.