File: jdarith.c

package info (click to toggle)
libjpeg-turbo 1:1.5.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 9,068 kB
  • ctags: 6,369
  • sloc: ansic: 43,407; asm: 25,683; sh: 5,436; java: 3,123; makefile: 797; xml: 24
file content (766 lines) | stat: -rw-r--r-- 24,950 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
/*
 * jdarith.c
 *
 * This file was part of the Independent JPEG Group's software:
 * Developed 1997-2015 by Guido Vollbeding.
 * libjpeg-turbo Modifications:
 * Copyright (C) 2015-2016, D. R. Commander.
 * For conditions of distribution and use, see the accompanying README.ijg
 * file.
 *
 * This file contains portable arithmetic entropy decoding routines for JPEG
 * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81).
 *
 * Both sequential and progressive modes are supported in this single module.
 *
 * Suspension is not currently supported in this module.
 */

#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"


/* Expanded entropy decoder object for arithmetic decoding. */

typedef struct {
  struct jpeg_entropy_decoder pub; /* public fields */

  JLONG c;       /* C register, base of coding interval + input bit buffer */
  JLONG a;               /* A register, normalized size of coding interval */
  int ct;     /* bit shift counter, # of bits left in bit buffer part of C */
                                                         /* init: ct = -16 */
                                                         /* run: ct = 0..7 */
                                                         /* error: ct = -1 */
  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
  int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */

  unsigned int restarts_to_go;  /* MCUs left in this restart interval */

  /* Pointers to statistics areas (these workspaces have image lifespan) */
  unsigned char *dc_stats[NUM_ARITH_TBLS];
  unsigned char *ac_stats[NUM_ARITH_TBLS];

  /* Statistics bin for coding with fixed probability 0.5 */
  unsigned char fixed_bin[4];
} arith_entropy_decoder;

typedef arith_entropy_decoder *arith_entropy_ptr;

/* The following two definitions specify the allocation chunk size
 * for the statistics area.
 * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
 * 49 statistics bins for DC, and 245 statistics bins for AC coding.
 *
 * We use a compact representation with 1 byte per statistics bin,
 * thus the numbers directly represent byte sizes.
 * This 1 byte per statistics bin contains the meaning of the MPS
 * (more probable symbol) in the highest bit (mask 0x80), and the
 * index into the probability estimation state machine table
 * in the lower bits (mask 0x7F).
 */

#define DC_STAT_BINS 64
#define AC_STAT_BINS 256


LOCAL(int)
get_byte (j_decompress_ptr cinfo)
/* Read next input byte; we do not support suspension in this module. */
{
  struct jpeg_source_mgr *src = cinfo->src;

  if (src->bytes_in_buffer == 0)
    if (! (*src->fill_input_buffer) (cinfo))
      ERREXIT(cinfo, JERR_CANT_SUSPEND);
  src->bytes_in_buffer--;
  return GETJOCTET(*src->next_input_byte++);
}


/*
 * The core arithmetic decoding routine (common in JPEG and JBIG).
 * This needs to go as fast as possible.
 * Machine-dependent optimization facilities
 * are not utilized in this portable implementation.
 * However, this code should be fairly efficient and
 * may be a good base for further optimizations anyway.
 *
 * Return value is 0 or 1 (binary decision).
 *
 * Note: I've changed the handling of the code base & bit
 * buffer register C compared to other implementations
 * based on the standards layout & procedures.
 * While it also contains both the actual base of the
 * coding interval (16 bits) and the next-bits buffer,
 * the cut-point between these two parts is floating
 * (instead of fixed) with the bit shift counter CT.
 * Thus, we also need only one (variable instead of
 * fixed size) shift for the LPS/MPS decision, and
 * we can do away with any renormalization update
 * of C (except for new data insertion, of course).
 *
 * I've also introduced a new scheme for accessing
 * the probability estimation state machine table,
 * derived from Markus Kuhn's JBIG implementation.
 */

LOCAL(int)
arith_decode (j_decompress_ptr cinfo, unsigned char *st)
{
  register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
  register unsigned char nl, nm;
  register JLONG qe, temp;
  register int sv, data;

  /* Renormalization & data input per section D.2.6 */
  while (e->a < 0x8000L) {
    if (--e->ct < 0) {
      /* Need to fetch next data byte */
      if (cinfo->unread_marker)
        data = 0;               /* stuff zero data */
      else {
        data = get_byte(cinfo); /* read next input byte */
        if (data == 0xFF) {     /* zero stuff or marker code */
          do data = get_byte(cinfo);
          while (data == 0xFF); /* swallow extra 0xFF bytes */
          if (data == 0)
            data = 0xFF;        /* discard stuffed zero byte */
          else {
            /* Note: Different from the Huffman decoder, hitting
             * a marker while processing the compressed data
             * segment is legal in arithmetic coding.
             * The convention is to supply zero data
             * then until decoding is complete.
             */
            cinfo->unread_marker = data;
            data = 0;
          }
        }
      }
      e->c = (e->c << 8) | data; /* insert data into C register */
      if ((e->ct += 8) < 0)      /* update bit shift counter */
        /* Need more initial bytes */
        if (++e->ct == 0)
          /* Got 2 initial bytes -> re-init A and exit loop */
          e->a = 0x8000L; /* => e->a = 0x10000L after loop exit */
    }
    e->a <<= 1;
  }

  /* Fetch values from our compact representation of Table D.2:
   * Qe values and probability estimation state machine
   */
  sv = *st;
  qe = jpeg_aritab[sv & 0x7F];  /* => Qe_Value */
  nl = qe & 0xFF; qe >>= 8;     /* Next_Index_LPS + Switch_MPS */
  nm = qe & 0xFF; qe >>= 8;     /* Next_Index_MPS */

  /* Decode & estimation procedures per sections D.2.4 & D.2.5 */
  temp = e->a - qe;
  e->a = temp;
  temp <<= e->ct;
  if (e->c >= temp) {
    e->c -= temp;
    /* Conditional LPS (less probable symbol) exchange */
    if (e->a < qe) {
      e->a = qe;
      *st = (sv & 0x80) ^ nm;   /* Estimate_after_MPS */
    } else {
      e->a = qe;
      *st = (sv & 0x80) ^ nl;   /* Estimate_after_LPS */
      sv ^= 0x80;               /* Exchange LPS/MPS */
    }
  } else if (e->a < 0x8000L) {
    /* Conditional MPS (more probable symbol) exchange */
    if (e->a < qe) {
      *st = (sv & 0x80) ^ nl;   /* Estimate_after_LPS */
      sv ^= 0x80;               /* Exchange LPS/MPS */
    } else {
      *st = (sv & 0x80) ^ nm;   /* Estimate_after_MPS */
    }
  }

  return sv >> 7;
}


/*
 * Check for a restart marker & resynchronize decoder.
 */

LOCAL(void)
process_restart (j_decompress_ptr cinfo)
{
  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
  int ci;
  jpeg_component_info *compptr;

  /* Advance past the RSTn marker */
  if (! (*cinfo->marker->read_restart_marker) (cinfo))
    ERREXIT(cinfo, JERR_CANT_SUSPEND);

  /* Re-initialize statistics areas */
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    compptr = cinfo->cur_comp_info[ci];
    if (!cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
      MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS);
      /* Reset DC predictions to 0 */
      entropy->last_dc_val[ci] = 0;
      entropy->dc_context[ci] = 0;
    }
    if (!cinfo->progressive_mode || cinfo->Ss) {
      MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS);
    }
  }

  /* Reset arithmetic decoding variables */
  entropy->c = 0;
  entropy->a = 0;
  entropy->ct = -16;    /* force reading 2 initial bytes to fill C */

  /* Reset restart counter */
  entropy->restarts_to_go = cinfo->restart_interval;
}


/*
 * Arithmetic MCU decoding.
 * Each of these routines decodes and returns one MCU's worth of
 * arithmetic-compressed coefficients.
 * The coefficients are reordered from zigzag order into natural array order,
 * but are not dequantized.
 *
 * The i'th block of the MCU is stored into the block pointed to by
 * MCU_data[i].  WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
 */

/*
 * MCU decoding for DC initial scan (either spectral selection,
 * or first pass of successive approximation).
 */

METHODDEF(boolean)
decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
{
  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
  JBLOCKROW block;
  unsigned char *st;
  int blkn, ci, tbl, sign;
  int v, m;

  /* Process restart marker if needed */
  if (cinfo->restart_interval) {
    if (entropy->restarts_to_go == 0)
      process_restart(cinfo);
    entropy->restarts_to_go--;
  }

  if (entropy->ct == -1) return TRUE;   /* if error do nothing */

  /* Outer loop handles each block in the MCU */

  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
    block = MCU_data[blkn];
    ci = cinfo->MCU_membership[blkn];
    tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;

    /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */

    /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
    st = entropy->dc_stats[tbl] + entropy->dc_context[ci];

    /* Figure F.19: Decode_DC_DIFF */
    if (arith_decode(cinfo, st) == 0)
      entropy->dc_context[ci] = 0;
    else {
      /* Figure F.21: Decoding nonzero value v */
      /* Figure F.22: Decoding the sign of v */
      sign = arith_decode(cinfo, st + 1);
      st += 2; st += sign;
      /* Figure F.23: Decoding the magnitude category of v */
      if ((m = arith_decode(cinfo, st)) != 0) {
        st = entropy->dc_stats[tbl] + 20;       /* Table F.4: X1 = 20 */
        while (arith_decode(cinfo, st)) {
          if ((m <<= 1) == 0x8000) {
            WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
            entropy->ct = -1;                   /* magnitude overflow */
            return TRUE;
          }
          st += 1;
        }
      }
      /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
      if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
        entropy->dc_context[ci] = 0;               /* zero diff category */
      else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
        entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */
      else
        entropy->dc_context[ci] = 4 + (sign * 4);  /* small diff category */
      v = m;
      /* Figure F.24: Decoding the magnitude bit pattern of v */
      st += 14;
      while (m >>= 1)
        if (arith_decode(cinfo, st)) v |= m;
      v += 1; if (sign) v = -v;
      entropy->last_dc_val[ci] += v;
    }

    /* Scale and output the DC coefficient (assumes jpeg_natural_order[0]=0) */
    (*block)[0] = (JCOEF) LEFT_SHIFT(entropy->last_dc_val[ci], cinfo->Al);
  }

  return TRUE;
}


/*
 * MCU decoding for AC initial scan (either spectral selection,
 * or first pass of successive approximation).
 */

METHODDEF(boolean)
decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
{
  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
  JBLOCKROW block;
  unsigned char *st;
  int tbl, sign, k;
  int v, m;

  /* Process restart marker if needed */
  if (cinfo->restart_interval) {
    if (entropy->restarts_to_go == 0)
      process_restart(cinfo);
    entropy->restarts_to_go--;
  }

  if (entropy->ct == -1) return TRUE;   /* if error do nothing */

  /* There is always only one block per MCU */
  block = MCU_data[0];
  tbl = cinfo->cur_comp_info[0]->ac_tbl_no;

  /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */

  /* Figure F.20: Decode_AC_coefficients */
  for (k = cinfo->Ss; k <= cinfo->Se; k++) {
    st = entropy->ac_stats[tbl] + 3 * (k - 1);
    if (arith_decode(cinfo, st)) break;         /* EOB flag */
    while (arith_decode(cinfo, st + 1) == 0) {
      st += 3; k++;
      if (k > cinfo->Se) {
        WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
        entropy->ct = -1;                       /* spectral overflow */
        return TRUE;
      }
    }
    /* Figure F.21: Decoding nonzero value v */
    /* Figure F.22: Decoding the sign of v */
    sign = arith_decode(cinfo, entropy->fixed_bin);
    st += 2;
    /* Figure F.23: Decoding the magnitude category of v */
    if ((m = arith_decode(cinfo, st)) != 0) {
      if (arith_decode(cinfo, st)) {
        m <<= 1;
        st = entropy->ac_stats[tbl] +
             (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
        while (arith_decode(cinfo, st)) {
          if ((m <<= 1) == 0x8000) {
            WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
            entropy->ct = -1;                   /* magnitude overflow */
            return TRUE;
          }
          st += 1;
        }
      }
    }
    v = m;
    /* Figure F.24: Decoding the magnitude bit pattern of v */
    st += 14;
    while (m >>= 1)
      if (arith_decode(cinfo, st)) v |= m;
    v += 1; if (sign) v = -v;
    /* Scale and output coefficient in natural (dezigzagged) order */
    (*block)[jpeg_natural_order[k]] = (JCOEF) ((unsigned)v << cinfo->Al);
  }

  return TRUE;
}


/*
 * MCU decoding for DC successive approximation refinement scan.
 */

METHODDEF(boolean)
decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
{
  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
  unsigned char *st;
  int p1, blkn;

  /* Process restart marker if needed */
  if (cinfo->restart_interval) {
    if (entropy->restarts_to_go == 0)
      process_restart(cinfo);
    entropy->restarts_to_go--;
  }

  st = entropy->fixed_bin;      /* use fixed probability estimation */
  p1 = 1 << cinfo->Al;          /* 1 in the bit position being coded */

  /* Outer loop handles each block in the MCU */

  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
    /* Encoded data is simply the next bit of the two's-complement DC value */
    if (arith_decode(cinfo, st))
      MCU_data[blkn][0][0] |= p1;
  }

  return TRUE;
}


/*
 * MCU decoding for AC successive approximation refinement scan.
 */

METHODDEF(boolean)
decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
{
  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
  JBLOCKROW block;
  JCOEFPTR thiscoef;
  unsigned char *st;
  int tbl, k, kex;
  int p1, m1;

  /* Process restart marker if needed */
  if (cinfo->restart_interval) {
    if (entropy->restarts_to_go == 0)
      process_restart(cinfo);
    entropy->restarts_to_go--;
  }

  if (entropy->ct == -1) return TRUE;   /* if error do nothing */

  /* There is always only one block per MCU */
  block = MCU_data[0];
  tbl = cinfo->cur_comp_info[0]->ac_tbl_no;

  p1 = 1 << cinfo->Al;          /* 1 in the bit position being coded */
  m1 = (-1) << cinfo->Al;       /* -1 in the bit position being coded */

  /* Establish EOBx (previous stage end-of-block) index */
  for (kex = cinfo->Se; kex > 0; kex--)
    if ((*block)[jpeg_natural_order[kex]]) break;

  for (k = cinfo->Ss; k <= cinfo->Se; k++) {
    st = entropy->ac_stats[tbl] + 3 * (k - 1);
    if (k > kex)
      if (arith_decode(cinfo, st)) break;       /* EOB flag */
    for (;;) {
      thiscoef = *block + jpeg_natural_order[k];
      if (*thiscoef) {                          /* previously nonzero coef */
        if (arith_decode(cinfo, st + 2)) {
          if (*thiscoef < 0)
            *thiscoef += m1;
          else
            *thiscoef += p1;
        }
        break;
      }
      if (arith_decode(cinfo, st + 1)) {        /* newly nonzero coef */
        if (arith_decode(cinfo, entropy->fixed_bin))
          *thiscoef = m1;
        else
          *thiscoef = p1;
        break;
      }
      st += 3; k++;
      if (k > cinfo->Se) {
        WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
        entropy->ct = -1;                       /* spectral overflow */
        return TRUE;
      }
    }
  }

  return TRUE;
}


/*
 * Decode one MCU's worth of arithmetic-compressed coefficients.
 */

METHODDEF(boolean)
decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
{
  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
  jpeg_component_info *compptr;
  JBLOCKROW block;
  unsigned char *st;
  int blkn, ci, tbl, sign, k;
  int v, m;

  /* Process restart marker if needed */
  if (cinfo->restart_interval) {
    if (entropy->restarts_to_go == 0)
      process_restart(cinfo);
    entropy->restarts_to_go--;
  }

  if (entropy->ct == -1) return TRUE;   /* if error do nothing */

  /* Outer loop handles each block in the MCU */

  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
    block = MCU_data ? MCU_data[blkn] : NULL;
    ci = cinfo->MCU_membership[blkn];
    compptr = cinfo->cur_comp_info[ci];

    /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */

    tbl = compptr->dc_tbl_no;

    /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
    st = entropy->dc_stats[tbl] + entropy->dc_context[ci];

    /* Figure F.19: Decode_DC_DIFF */
    if (arith_decode(cinfo, st) == 0)
      entropy->dc_context[ci] = 0;
    else {
      /* Figure F.21: Decoding nonzero value v */
      /* Figure F.22: Decoding the sign of v */
      sign = arith_decode(cinfo, st + 1);
      st += 2; st += sign;
      /* Figure F.23: Decoding the magnitude category of v */
      if ((m = arith_decode(cinfo, st)) != 0) {
        st = entropy->dc_stats[tbl] + 20;       /* Table F.4: X1 = 20 */
        while (arith_decode(cinfo, st)) {
          if ((m <<= 1) == 0x8000) {
            WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
            entropy->ct = -1;                   /* magnitude overflow */
            return TRUE;
          }
          st += 1;
        }
      }
      /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
      if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
        entropy->dc_context[ci] = 0;               /* zero diff category */
      else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
        entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */
      else
        entropy->dc_context[ci] = 4 + (sign * 4);  /* small diff category */
      v = m;
      /* Figure F.24: Decoding the magnitude bit pattern of v */
      st += 14;
      while (m >>= 1)
        if (arith_decode(cinfo, st)) v |= m;
      v += 1; if (sign) v = -v;
      entropy->last_dc_val[ci] += v;
    }

    if (block)
      (*block)[0] = (JCOEF) entropy->last_dc_val[ci];

    /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */

    tbl = compptr->ac_tbl_no;

    /* Figure F.20: Decode_AC_coefficients */
    for (k = 1; k <= DCTSIZE2 - 1; k++) {
      st = entropy->ac_stats[tbl] + 3 * (k - 1);
      if (arith_decode(cinfo, st)) break;       /* EOB flag */
      while (arith_decode(cinfo, st + 1) == 0) {
        st += 3; k++;
        if (k > DCTSIZE2 - 1) {
          WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
          entropy->ct = -1;                     /* spectral overflow */
          return TRUE;
        }
      }
      /* Figure F.21: Decoding nonzero value v */
      /* Figure F.22: Decoding the sign of v */
      sign = arith_decode(cinfo, entropy->fixed_bin);
      st += 2;
      /* Figure F.23: Decoding the magnitude category of v */
      if ((m = arith_decode(cinfo, st)) != 0) {
        if (arith_decode(cinfo, st)) {
          m <<= 1;
          st = entropy->ac_stats[tbl] +
               (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
          while (arith_decode(cinfo, st)) {
            if ((m <<= 1) == 0x8000) {
              WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
              entropy->ct = -1;                 /* magnitude overflow */
              return TRUE;
            }
            st += 1;
          }
        }
      }
      v = m;
      /* Figure F.24: Decoding the magnitude bit pattern of v */
      st += 14;
      while (m >>= 1)
        if (arith_decode(cinfo, st)) v |= m;
      v += 1; if (sign) v = -v;
      if (block)
        (*block)[jpeg_natural_order[k]] = (JCOEF) v;
    }
  }

  return TRUE;
}


/*
 * Initialize for an arithmetic-compressed scan.
 */

METHODDEF(void)
start_pass (j_decompress_ptr cinfo)
{
  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
  int ci, tbl;
  jpeg_component_info *compptr;

  if (cinfo->progressive_mode) {
    /* Validate progressive scan parameters */
    if (cinfo->Ss == 0) {
      if (cinfo->Se != 0)
        goto bad;
    } else {
      /* need not check Ss/Se < 0 since they came from unsigned bytes */
      if (cinfo->Se < cinfo->Ss || cinfo->Se > DCTSIZE2 - 1)
        goto bad;
      /* AC scans may have only one component */
      if (cinfo->comps_in_scan != 1)
        goto bad;
    }
    if (cinfo->Ah != 0) {
      /* Successive approximation refinement scan: must have Al = Ah-1. */
      if (cinfo->Ah-1 != cinfo->Al)
        goto bad;
    }
    if (cinfo->Al > 13) {       /* need not check for < 0 */
      bad:
      ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
               cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
    }
    /* Update progression status, and verify that scan order is legal.
     * Note that inter-scan inconsistencies are treated as warnings
     * not fatal errors ... not clear if this is right way to behave.
     */
    for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
      int coefi, cindex = cinfo->cur_comp_info[ci]->component_index;
      int *coef_bit_ptr = & cinfo->coef_bits[cindex][0];
      if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */
        WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
      for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
        int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
        if (cinfo->Ah != expected)
          WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
        coef_bit_ptr[coefi] = cinfo->Al;
      }
    }
    /* Select MCU decoding routine */
    if (cinfo->Ah == 0) {
      if (cinfo->Ss == 0)
        entropy->pub.decode_mcu = decode_mcu_DC_first;
      else
        entropy->pub.decode_mcu = decode_mcu_AC_first;
    } else {
      if (cinfo->Ss == 0)
        entropy->pub.decode_mcu = decode_mcu_DC_refine;
      else
        entropy->pub.decode_mcu = decode_mcu_AC_refine;
    }
  } else {
    /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
     * This ought to be an error condition, but we make it a warning.
     */
    if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 ||
        (cinfo->Se < DCTSIZE2 && cinfo->Se != DCTSIZE2 - 1))
      WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
    /* Select MCU decoding routine */
    entropy->pub.decode_mcu = decode_mcu;
  }

  /* Allocate & initialize requested statistics areas */
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    compptr = cinfo->cur_comp_info[ci];
    if (!cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
      tbl = compptr->dc_tbl_no;
      if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
        ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
      if (entropy->dc_stats[tbl] == NULL)
        entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
          ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS);
      MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS);
      /* Initialize DC predictions to 0 */
      entropy->last_dc_val[ci] = 0;
      entropy->dc_context[ci] = 0;
    }
    if (!cinfo->progressive_mode || cinfo->Ss) {
      tbl = compptr->ac_tbl_no;
      if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
        ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
      if (entropy->ac_stats[tbl] == NULL)
        entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
          ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS);
      MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS);
    }
  }

  /* Initialize arithmetic decoding variables */
  entropy->c = 0;
  entropy->a = 0;
  entropy->ct = -16;    /* force reading 2 initial bytes to fill C */

  /* Initialize restart counter */
  entropy->restarts_to_go = cinfo->restart_interval;
}


/*
 * Module initialization routine for arithmetic entropy decoding.
 */

GLOBAL(void)
jinit_arith_decoder (j_decompress_ptr cinfo)
{
  arith_entropy_ptr entropy;
  int i;

  entropy = (arith_entropy_ptr)
    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
                                sizeof(arith_entropy_decoder));
  cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
  entropy->pub.start_pass = start_pass;

  /* Mark tables unallocated */
  for (i = 0; i < NUM_ARITH_TBLS; i++) {
    entropy->dc_stats[i] = NULL;
    entropy->ac_stats[i] = NULL;
  }

  /* Initialize index for fixed probability estimation */
  entropy->fixed_bin[0] = 113;

  if (cinfo->progressive_mode) {
    /* Create progression status table */
    int *coef_bit_ptr, ci;
    cinfo->coef_bits = (int (*)[DCTSIZE2])
      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
                                  cinfo->num_components*DCTSIZE2*sizeof(int));
    coef_bit_ptr = & cinfo->coef_bits[0][0];
    for (ci = 0; ci < cinfo->num_components; ci++)
      for (i = 0; i < DCTSIZE2; i++)
        *coef_bit_ptr++ = -1;
  }
}