1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
|
/*************************************************************************
This project implements a complete(!) JPEG (Recommendation ITU-T
T.81 | ISO/IEC 10918-1) codec, plus a library that can be used to
encode and decode JPEG streams.
It also implements ISO/IEC 18477 aka JPEG XT which is an extension
towards intermediate, high-dynamic-range lossy and lossless coding
of JPEG. In specific, it supports ISO/IEC 18477-3/-6/-7/-8 encoding.
Note that only Profiles C and D of ISO/IEC 18477-7 are supported
here. Check the JPEG XT reference software for a full implementation
of ISO/IEC 18477-7.
Copyright (C) 2012-2018 Thomas Richter, University of Stuttgart and
Accusoft. (C) 2019-2020 Thomas Richter, Fraunhofer IIS.
This program is available under two licenses, GPLv3 and the ITU
Software licence Annex A Option 2, RAND conditions.
For the full text of the GPU license option, see README.license.gpl.
For the full text of the ITU license option, see README.license.itu.
You may freely select between these two options.
For the GPL option, please note the following:
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*************************************************************************/
/*
**
** Represents all data in a single scan, and hence is the SOS marker.
**
** $Id: scan.hpp,v 1.66 2017/06/06 10:51:41 thor Exp $
**
*/
#ifndef MARKER_SCAN_HPP
#define MARKER_SCAN_HPP
/// Includes
#include "tools/environment.hpp"
#include "tools/rectangle.hpp"
#include "interface/imagebitmap.hpp"
#include "marker/scantypes.hpp"
#include "std/assert.hpp"
///
/// Forwards
class ByteStream;
class Component;
class Frame;
class Tables;
class QuantizedRow;
struct ImageBitMap;
class BitMapHook;
struct RectangleRequest;
class UpsamplerBase;
class DownsamplerBase;
class BitmapCtrl;
class BufferCtrl;
class LineAdapter;
class EntropyParser;
class Checksum;
///
/// class Scan
// This class implements the scan header.
class Scan : public JKeeper {
//
// Next scan in line, potentially covering more
// components.
class Scan *m_pNext;
//
// Frame this scan is part of.
class Frame *m_pFrame;
//
// The codestream parser that interprets the entropy coded
// data. Not done here.
class EntropyParser *m_pParser;
//
// Scans may have private AC coding tables that adapt
// to the statistics of the components within. If so,
// such tables are here. These are not used on decoding
// where tables come from the global "tables".
//
// The huffman table.
class HuffmanTable *m_pHuffman;
//
// The AC table.
class ACTable *m_pConditioner;
//
// Number of the components in the scan.
UBYTE m_ucCount;
//
// Index of the scan. This is just for housekeeping and not
// part of the JPEG syntax.
UBYTE m_ucScanIndex;
//
// Components selected for the scan, there are as many as
// indicated above.
UBYTE m_ucComponent[4];
//
// The DC coding table selector.
UBYTE m_ucDCTable[4];
//
// The AC coding table selector.
UBYTE m_ucACTable[4];
//
// Spectral coding selector, start of scan.
// Also the NEAR value for JPEG-LS
UBYTE m_ucScanStart;
//
// Spectral coding selector, end of scan.
// Also the interleaving value for JPEG-LS.
UBYTE m_ucScanStop;
//
// Start approximation high bit position.
UBYTE m_ucHighBit;
//
// End of approximation low bit position.
// Also the point transformation.
UBYTE m_ucLowBit;
//
// Number of hidden bits not included in the low bit count.
UBYTE m_ucHiddenBits;
//
// Set if this scan is a hidden scan and goes into a
// side channel.
bool m_bHidden;
//
// Mapping table selector for JPEG_LS
UBYTE m_ucMappingTable[4];
//
// Component pointers
class Component *m_pComponent[4];
//
// Create a suitable parser given the scan type as indicated in the
// header and the contents of the marker. The parser is kept
// here as it is local to the scan.
void CreateParser(void);
//
public:
//
Scan(class Frame *frame);
//
virtual ~Scan(void);
//
// Flush the remaining bits out to the stream on writing.
void Flush(void);
//
// Return the next scan found here.
class Scan *NextOf(void) const
{
return m_pNext;
}
//
// Tag on a next scan to this scan.
void TagOn(class Scan *next)
{
assert(m_pNext == NULL);
m_pNext = next;
next->m_ucScanIndex = m_ucScanIndex + 1;
}
//
// Return the i'th component of the scan.
class Component *ComponentOf(UBYTE i);
//
// Return the number of the components in the scan.
UBYTE ComponentsInScan(void) const
{
return m_ucCount;
}
//
// Check whether this scan is in a side channel and hidden
// in an extra box included in an APP11 marker.
bool isHidden(void) const
{
return m_bHidden;
}
//
// Find the DC huffman table of the indicated index.
class HuffmanTemplate *FindDCHuffmanTable(UBYTE idx) const;
//
// Find the AC huffman table of the indicated index.
class HuffmanTemplate *FindACHuffmanTable(UBYTE idx) const;
//
// Find the AC conditioner table for the indicated index
// and the DC band.
class ACTemplate *FindDCConditioner(UBYTE idx) const;
//
// The same for the AC band.
class ACTemplate *FindACConditioner(UBYTE idx) const;
//
// Find the thresholds of the JPEG LS scan.
class Thresholds *FindThresholds(void) const;
//
// Write the scan type marker at the beginning of the
// file.
void WriteFrameType(class ByteStream *io);
//
// Parse the marker contents. The scan type comes from
// the frame type.
void ParseMarker(class ByteStream *io);
//
// Parse the marker contents where the scan type
// comes from an additional parameter.
void ParseMarker(class ByteStream *io,ScanType type);
//
// Write the marker to the stream. Note that this should
// be called indirectly by the implementing interface of
// the entropy parser and not called here from toplevel.
void WriteMarker(class ByteStream *io);
//
// Install the defaults for a given scan type
// containing the given number of components.
// The tag offset is added to the tag to offset them for the
// residual coding tags.
void InstallDefaults(UBYTE depth,ULONG tagoffset,const struct JPG_TagItem *tags);
//
// Make this scan a hidden refinement scan starting at the indicated
// bit position in the indicated component label. If start and stop are
// both zero to indicate a DC scan, all components are included and comp
// may be NULL.
void MakeHiddenRefinementScan(UBYTE bitposition,class Component *comp,UBYTE sstart,UBYTE sstop);
//
// Parse off a hidden refinement scan from the given position.
void StartParseHiddenRefinementScan(class ByteStream *io,class BufferCtrl *ctrl);
//
// Fill in the decoding tables required.
void StartParseScan(class ByteStream *io,class Checksum *chk,class BufferCtrl *ctrl);
//
// Fill in the encoding tables.
void StartWriteScan(class ByteStream *io,class Checksum *chk,class BufferCtrl *ctrl);
//
// Start making a measurement run to optimize the
// huffman tables.
void StartMeasureScan(class BufferCtrl *ctrl);
//
// Start a rate/distortion optimization for scan on the given buffer.
void StartOptimizeScan(class BufferCtrl *ctrl);
//
// Start a MCU scan.
bool StartMCURow(void);
//
// Parse a single MCU in this scan.
bool ParseMCU(void);
//
// Write a single MCU in this scan.
bool WriteMCU(void);
//
// Return the huffman decoder of the DC value for the
// indicated component.
class HuffmanDecoder *DCHuffmanDecoderOf(UBYTE idx) const;
//
// Return the huffman decoder of the DC value for the
// indicated component.
class HuffmanDecoder *ACHuffmanDecoderOf(UBYTE idx) const;
//
// Find the Huffman decoder of the indicated index.
class HuffmanCoder *DCHuffmanCoderOf(UBYTE idx) const;
//
// Find the Huffman decoder of the indicated index.
class HuffmanCoder *ACHuffmanCoderOf(UBYTE idx) const;
//
// Find the Huffman decoder of the indicated index.
class HuffmanStatistics *DCHuffmanStatisticsOf(UBYTE idx) const;
//
// Find the Huffman decoder of the indicated index.
class HuffmanStatistics *ACHuffmanStatisticsOf(UBYTE idx) const;
//
// Find the arithmetic coding conditioner table for the indicated
// component and the DC band.
class ACTemplate *DCConditionerOf(UBYTE idx) const;
//
// The same for the AC band.
class ACTemplate *ACConditionerOf(UBYTE idx) const;
//
// Return the DC table of the conditioner.
UBYTE DCTableIndexOf(UBYTE idx) const
{
assert(idx < 4);
return m_ucDCTable[idx];
}
//
// Return the AC table of the conditioner.
UBYTE ACTableIndexOf(UBYTE idx) const
{
assert(idx < 4);
return m_ucACTable[idx];
}
//
// Optimize the given DCT block for ideal rate-distortion performance. The
// input parameters are the component this applies to, the critical R/D slope,
// the original transformed but unquantized DCT data and the quantized DCT
// block.
void OptimizeDCTBlock(LONG bx,LONG by,UBYTE compidx,DOUBLE lambda,
class DCT *dct,LONG quantized[64]);
//
// Run a joint optimization of the R/D performance of all DC coefficients
// within this scan. This requires a separate joint efford as DC coefficients
// are encoded dependently.
void OptimizeDC(void);
};
///
///
#endif
|