1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
|
/*************************************************************************
This project implements a complete(!) JPEG (Recommendation ITU-T
T.81 | ISO/IEC 10918-1) codec, plus a library that can be used to
encode and decode JPEG streams.
It also implements ISO/IEC 18477 aka JPEG XT which is an extension
towards intermediate, high-dynamic-range lossy and lossless coding
of JPEG. In specific, it supports ISO/IEC 18477-3/-6/-7/-8 encoding.
Note that only Profiles C and D of ISO/IEC 18477-7 are supported
here. Check the JPEG XT reference software for a full implementation
of ISO/IEC 18477-7.
Copyright (C) 2012-2018 Thomas Richter, University of Stuttgart and
Accusoft. (C) 2019-2020 Thomas Richter, Fraunhofer IIS.
This program is available under two licenses, GPLv3 and the ITU
Software licence Annex A Option 2, RAND conditions.
For the full text of the GPU license option, see README.license.gpl.
For the full text of the ITU license option, see README.license.itu.
You may freely select between these two options.
For the GPL option, please note the following:
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*************************************************************************/
/*
**
** Base class for all upsamplers, common for all upsampling processes
** and independent of the upsampling factors.
**
** $Id: upsamplerbase.cpp,v 1.22 2020/08/31 07:50:44 thor Exp $
**
*/
/// Includes
#include "tools/environment.hpp"
#include "tools/rectangle.hpp"
#include "upsampling/upsamplerbase.hpp"
#include "coding/quantizedrow.hpp"
#include "upsampling/upsampler.hpp"
#include "upsampling/cositedupsampler.hpp"
#include "std/string.hpp"
///
/// UpsamplerBase::UpsamplerBase
UpsamplerBase::UpsamplerBase(class Environ *env,int sx,int sy,ULONG pixelwidth,ULONG pixelheight)
: JKeeper(env), m_lY(0), m_lHeight(0), m_ucSubX(sx), m_ucSubY(sy),
m_pInputBuffer(NULL), m_pLastRow(NULL), m_pFree(NULL)
{
// Check whether a DNL marker is present.
if (pixelheight == 0)
pixelheight = ~0U >> 1;
// Compute the width in input buffer (subsampled) pixels.
m_ulWidth = (pixelwidth + sx - 1) / sx;
m_lTotalLines = (pixelheight + sy - 1) / sy;
//
// Also store the dimension in pixels.
m_ulPixelWidth = pixelwidth;
m_ulPixelHeight = pixelheight;
}
///
/// UpsamplerBase::~UpsamplerBase
UpsamplerBase::~UpsamplerBase(void)
{
struct Line *row;
while((row = m_pInputBuffer)) {
m_pInputBuffer = row->m_pNext;
if (row->m_pData)
m_pEnviron->FreeMem(row->m_pData,(m_ulWidth + 2 + 8) * sizeof(LONG));
delete row;
}
while((row = m_pFree)) {
m_pFree = row->m_pNext;
m_pEnviron->FreeMem(row->m_pData,(m_ulWidth + 2 + 8) * sizeof(LONG));
delete row;
}
}
///
/// UpsamplerBase::GetCollectedBlocks
// Return a rectangle of block coordinates in the image domain
// that is ready for output.
void UpsamplerBase::GetCollectedBlocks(RectAngle<LONG> &rect) const
{
rect.ra_MinX = 0;
rect.ra_MaxX = (m_ulWidth * m_ucSubX - 1) >> 3;
//
// We need one line above the first line we can upsample
// except for the top of the image.
if (m_ucSubY > 1) {
if (m_lY) {
rect.ra_MinY = ((m_lY + 1) * m_ucSubY) >> 3;
} else {
rect.ra_MinY = 0;
}
} else {
rect.ra_MinY = m_lY >> 3;
}
//
// All of the image?
if (m_lY + m_lHeight >= m_lTotalLines) {
// Yes, return all of it.
rect.ra_MaxY = (m_lTotalLines * m_ucSubY - 1) >> 3;
} else {
// m_lY + m_lHeight - 1 is the last line buffered, hence
// (m_lY + m_lHeight - 1) * m_ucSubY is the last line we can reconstruct
// since the next output line would require the following line.
// this plus one is the *first* line we cannot compute.
// Of this line, we compute the block, then subtract one
// to get the last block we surely have.
rect.ra_MaxY = (((m_lY + m_lHeight - 1) * m_ucSubY + 1) >> 3) - 1;
}
}
///
/// UpsamplerBase::SetBufferedImageRegion
// Set the buffered region given in image regions, not in
// block regions. Returns the updated rectangle in blocks
void UpsamplerBase::SetBufferedImageRegion(RectAngle<LONG> ®ion)
{
LONG bwidth = ((m_ulPixelWidth + m_ucSubX - 1) / m_ucSubX + 7) >> 3;
LONG bheight = ((m_ulPixelHeight + m_ucSubY - 1) / m_ucSubY + 7) >> 3;
LONG rx = (m_ucSubX > 1)?(1):(0);
LONG ry = (m_ucSubY > 1)?(1):(0);
// The +/-1 include additional lines required for subsampling expansion
region.ra_MinX = ((region.ra_MinX / m_ucSubX - rx) >> 3);
region.ra_MaxX = ((region.ra_MaxX / m_ucSubX + rx) >> 3);
region.ra_MinY = ((region.ra_MinY / m_ucSubY - ry) >> 3);
region.ra_MaxY = ((region.ra_MaxY / m_ucSubY + ry) >> 3);
// Clip.
if (region.ra_MinX < 0) region.ra_MinX = 0;
if (region.ra_MaxX >= bwidth) region.ra_MaxX = bwidth - 1;
if (region.ra_MinY < 0) region.ra_MinY = 0;
if (region.ra_MaxY >= bheight) region.ra_MaxY = bheight - 1;
//
SetBufferedRegion(region); // also removes the rectangle of blocks already buffered.
}
///
/// UpsamplerBase::SetBufferedRegion
// Define the region to be buffered, clipping off what has been buffered
// here before. Modifies the rectangle to contain only what is needed
// in addition to what is here already. The rectangle is in block indices.
void UpsamplerBase::SetBufferedRegion(RectAngle<LONG> ®ion)
{
struct Line *row;
// First check whether we can clip off anything at the top.
// Drop off anything above the region.
while(m_lY < (region.ra_MinY << 3)) {
// The current Y line is no longer required, drop it.
// If it is there.
row = m_pInputBuffer;
if (row) {
m_pInputBuffer = row->m_pNext;
if (m_pInputBuffer == NULL) {
assert(row == m_pLastRow);
assert(m_lHeight == 1);
// it hopefully is as it has no following line
m_pLastRow = NULL;
}
row->m_pNext = m_pFree;
m_pFree = row;
m_lHeight--;
}
m_lY++;
}
//
// Here the first row is now either the first row of the region, or it is NULL
// if it is not yet present. We also have that m_lY >= region.ra_MinY, i.e.
// the buffered region starts
assert(m_lY >= (region.ra_MinY << 3));
//
// If part of the buffered region is below our top line, just dispose the buffer.
if (m_lY > (region.ra_MinY << 3)) {
if (m_pInputBuffer) {
assert(m_pLastRow);
m_pInputBuffer->m_pNext = m_pFree;
m_pFree = m_pInputBuffer;
m_lHeight = 0;
m_pInputBuffer = NULL;
m_pLastRow = NULL;
}
m_lY = region.ra_MinY << 3;
}
//
assert(m_lY == (region.ra_MinY << 3));
//
// Now remove all the lines from the region that are in the buffer.
region.ra_MinY = (m_lY + m_lHeight + 7) >> 3;
//
// The region to request is now non-empty.
ExtendBufferedRegion(region);
}
///
/// UpsamplerBase::ExtendBufferedRegion
// Make the buffered region larger to include at least the given rectangle.
// The rectangle is given in block indices, not canvas coordinates.
void UpsamplerBase::ExtendBufferedRegion(const RectAngle<LONG> ®ion)
{
LONG maxy;
// All lines from minY to maxY now need to be allocated as the caller
// need to fill them in. This includes that if
// region.ra_MinY > region.ra_MaxY. This is because
// region.ra_MinY == m_lY + m_lHeight by the above
// assignment.
maxy = (1 + region.ra_MaxY) << 3; // +1: conversion to exclusive.
if (maxy > m_lTotalLines)
maxy = m_lTotalLines;
//
while(m_lY + m_lHeight < maxy) {
struct Line *qrow,*alloc = NULL;
//
// Get a new pixel row, either from the buffered
// rows or from the heap.
if (m_pFree) {
qrow = m_pFree;
m_pFree = qrow->m_pNext;
qrow->m_pNext = NULL;
} else {
alloc = new(m_pEnviron) struct Line;
qrow = alloc;
}
//
//
if (m_pLastRow) {
m_pLastRow->m_pNext = qrow;
m_pLastRow = qrow;
} else {
assert(m_pInputBuffer == NULL);
m_pLastRow = m_pInputBuffer = qrow;
}
//
// Allocate the memory for it.
if (alloc) {
alloc->m_pData = (LONG *)m_pEnviron->AllocMem((m_ulWidth + 2 + 8) * sizeof(LONG));
}
m_lHeight++;
}
}
///
/// UpsamplerBase::RemoveBlocks
// Remove the blocks of the given block line, given in image
// block coordinates.
void UpsamplerBase::RemoveBlocks(ULONG by)
{
LONG firstkeep = (by + 1) << 3; // The first line that has to be kept.
//
if (m_ucSubY > 1) {
// However, lines are here in subsampled coordinates, and one
// extra line is needed.
firstkeep = (firstkeep / m_ucSubY) - 1;
}
while(m_lY < firstkeep) {
struct Line *row;
// The current Y line is no longer required, drop it. If it is there.
row = m_pInputBuffer;
if (row) {
m_pInputBuffer = row->m_pNext;
if (m_pInputBuffer == NULL) {
assert(row == m_pLastRow);
assert(m_lHeight == 1);
// it hopefully is as it has no following line
m_pLastRow = NULL;
}
row->m_pNext = m_pFree;
m_pFree = row;
m_lHeight--;
}
m_lY++;
}
}
///
/// UpsamplerBase::DefineRegion
// Define the region to contain the given data, copy it to the line buffers
// for later upsampling. Coordinates are in blocks.
void UpsamplerBase::DefineRegion(LONG bx,LONG by,const LONG *data)
{
struct Line *line = m_pInputBuffer;
LONG cnt = 8,y = m_lY;
bx <<= 3;
by <<= 3; // to pixel coordinates.
assert(by >= m_lY && by < m_lY + m_lHeight);
// Find the target line.
while(y < by) {
line = line->m_pNext;
y++;
}
assert(line);
do {
LONG *dest = line->m_pData + 1;
memcpy(dest + bx,data,8 * sizeof(LONG));
// Just copy the edges. Simpler just to do than to
// make a test whether it is necessary.
dest[-1] = dest[0];
dest[m_ulWidth] = dest[m_ulWidth - 1];
line = line->m_pNext;
data += 8;
} while(--cnt && line);
}
///
/// UpsamplerBase::CreateUpsampler
// Create an upsampler for the given upsampling factors. Currently, only
// factors from 1x1 to 4x4 are supported.
class UpsamplerBase *UpsamplerBase::CreateUpsampler(class Environ *env,int sx,int sy,
ULONG width,ULONG height,bool centered)
{
if (centered) {
switch(sy) {
case 1:
switch(sx) {
case 1:
return new(env) Upsampler<1,1>(env,width,height);
break;
case 2:
return new(env) Upsampler<2,1>(env,width,height);
break;
case 3:
return new(env) Upsampler<3,1>(env,width,height);
break;
case 4:
return new(env) Upsampler<4,1>(env,width,height);
break;
}
break;
case 2:
switch(sx) {
case 1:
return new(env) Upsampler<1,2>(env,width,height);
break;
case 2:
return new(env) Upsampler<2,2>(env,width,height);
break;
case 3:
return new(env) Upsampler<3,2>(env,width,height);
break;
case 4:
return new(env) Upsampler<4,2>(env,width,height);
break;
}
break;
case 3:
switch(sx) {
case 1:
return new(env) Upsampler<1,3>(env,width,height);
break;
case 2:
return new(env) Upsampler<2,3>(env,width,height);
break;
case 3:
return new(env) Upsampler<3,3>(env,width,height);
break;
case 4:
return new(env) Upsampler<4,3>(env,width,height);
break;
}
break;
case 4:
switch(sx) {
case 1:
return new(env) Upsampler<1,4>(env,width,height);
break;
case 2:
return new(env) Upsampler<2,4>(env,width,height);
break;
case 3:
return new(env) Upsampler<3,4>(env,width,height);
break;
case 4:
return new(env) Upsampler<4,4>(env,width,height);
break;
}
break;
}
} else {
switch(sy) {
case 1:
switch(sx) {
case 1:
return new(env) CositedUpsampler<1,1>(env,width,height);
break;
case 2:
return new(env) CositedUpsampler<2,1>(env,width,height);
break;
case 3:
return new(env) CositedUpsampler<3,1>(env,width,height);
break;
case 4:
return new(env) CositedUpsampler<4,1>(env,width,height);
break;
}
break;
case 2:
switch(sx) {
case 1:
return new(env) CositedUpsampler<1,2>(env,width,height);
break;
case 2:
return new(env) CositedUpsampler<2,2>(env,width,height);
break;
case 3:
return new(env) CositedUpsampler<3,2>(env,width,height);
break;
case 4:
return new(env) CositedUpsampler<4,2>(env,width,height);
break;
}
break;
case 3:
switch(sx) {
case 1:
return new(env) CositedUpsampler<1,3>(env,width,height);
break;
case 2:
return new(env) CositedUpsampler<2,3>(env,width,height);
break;
case 3:
return new(env) CositedUpsampler<3,3>(env,width,height);
break;
case 4:
return new(env) CositedUpsampler<4,3>(env,width,height);
break;
}
break;
case 4:
switch(sx) {
case 1:
return new(env) CositedUpsampler<1,4>(env,width,height);
break;
case 2:
return new(env) CositedUpsampler<2,4>(env,width,height);
break;
case 3:
return new(env) CositedUpsampler<3,4>(env,width,height);
break;
case 4:
return new(env) CositedUpsampler<4,4>(env,width,height);
break;
}
break;
}
}
{
class Environ *m_pEnviron = env;
JPG_THROW(NOT_IMPLEMENTED,"DownsamplerBase::CreateUpsampler",
"subsampling factors larger than 4x4 are not supported, sorry");
}
return NULL;
}
///
|