1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
|
/*************************************************************************
This project implements a complete(!) JPEG (Recommendation ITU-T
T.81 | ISO/IEC 10918-1) codec, plus a library that can be used to
encode and decode JPEG streams.
It also implements ISO/IEC 18477 aka JPEG XT which is an extension
towards intermediate, high-dynamic-range lossy and lossless coding
of JPEG. In specific, it supports ISO/IEC 18477-3/-6/-7/-8 encoding.
Note that only Profiles C and D of ISO/IEC 18477-7 are supported
here. Check the JPEG XT reference software for a full implementation
of ISO/IEC 18477-7.
Copyright (C) 2012-2018 Thomas Richter, University of Stuttgart and
Accusoft. (C) 2019-2020 Thomas Richter, Fraunhofer IIS.
This program is available under two licenses, GPLv3 and the ITU
Software licence Annex A Option 2, RAND conditions.
For the full text of the GPU license option, see README.license.gpl.
For the full text of the ITU license option, see README.license.itu.
You may freely select between these two options.
For the GPL option, please note the following:
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*************************************************************************/
/*
**
** Represents the scan including the scan header.
**
** $Id: losslessscan.cpp,v 1.53 2024/11/05 06:39:25 thor Exp $
**
*/
/// Includes
#include "codestream/losslessscan.hpp"
#include "io/bytestream.hpp"
#include "control/linebuffer.hpp"
#include "control/linebitmaprequester.hpp"
#include "control/lineadapter.hpp"
#include "marker/frame.hpp"
#include "marker/scan.hpp"
#include "marker/component.hpp"
#include "codestream/tables.hpp"
#include "io/bitstream.hpp"
#include "coding/huffmantemplate.hpp"
#include "coding/huffmancoder.hpp"
#include "coding/huffmandecoder.hpp"
#include "coding/huffmanstatistics.hpp"
#include "codestream/tables.hpp"
#include "codestream/predictorbase.hpp"
#include "tools/line.hpp"
///
/// LosslessScan::LosslessScan
LosslessScan::LosslessScan(class Frame *frame,class Scan *scan,UBYTE predictor,UBYTE lowbit,bool differential)
: PredictiveScan(frame,scan,predictor,lowbit,differential)
{
#if ACCUSOFT_CODE
for(int i = 0;i < 4;i++) {
m_pDCDecoder[i] = NULL;
m_pDCCoder[i] = NULL;
m_pDCStatistics[i] = NULL;
}
#endif
}
///
/// LosslessScan::~LosslessScan
LosslessScan::~LosslessScan(void)
{
}
///
/// LosslessScan::WriteFrameType
// Write the marker that indicates the frame type fitting to this scan.
void LosslessScan::WriteFrameType(class ByteStream *io)
{
#if ACCUSOFT_CODE
if (m_bDifferential) {
io->PutWord(0xffc7); // differential lossless sequential
} else {
io->PutWord(0xffc3); // lossless sequential
}
#else
NOREF(io);
#endif
}
///
/// LosslessScan::StartParseScan
void LosslessScan::StartParseScan(class ByteStream *io,class Checksum *chk,class BufferCtrl *ctrl)
{
#if ACCUSOFT_CODE
int i;
FindComponentDimensions();
for(i = 0;i < m_ucCount;i++) {
m_pDCDecoder[i] = m_pScan->DCHuffmanDecoderOf(i);
if (m_pDCDecoder[i] == NULL)
JPG_THROW(MALFORMED_STREAM,"LosslessScan::StartParseScan",
"Huffman decoder not specified for all components included in scan");
}
assert(ctrl->isLineBased());
m_pLineCtrl = dynamic_cast<LineBuffer *>(ctrl);
m_pLineCtrl->ResetToStartOfScan(m_pScan);
m_Stream.OpenForRead(io,chk);
#else
NOREF(io);
NOREF(chk);
NOREF(ctrl);
JPG_THROW(NOT_IMPLEMENTED,"LosslessScan::StartParseScan",
"Lossless JPEG not available in your code release, please contact Accusoft for a full version");
#endif
}
///
/// LosslessScan::StartWriteScan
void LosslessScan::StartWriteScan(class ByteStream *io,class Checksum *chk,class BufferCtrl *ctrl)
{
#if ACCUSOFT_CODE
int i;
FindComponentDimensions();
for(i = 0;i < m_ucCount;i++) {
m_pDCCoder[i] = m_pScan->DCHuffmanCoderOf(i);
m_pDCStatistics[i] = NULL;
}
assert(ctrl->isLineBased());
m_pLineCtrl = dynamic_cast<LineBuffer *>(ctrl);
m_pLineCtrl->ResetToStartOfScan(m_pScan);
EntropyParser::StartWriteScan(io,chk,ctrl);
m_pScan->WriteMarker(io);
m_Stream.OpenForWrite(io,chk);
m_bMeasure = false;
#else
NOREF(io);
NOREF(chk);
NOREF(ctrl);
JPG_THROW(NOT_IMPLEMENTED,"LosslessScan::StartWriteScan",
"Lossless JPEG not available in your code release, please contact Accusoft for a full version");
#endif
}
///
/// LosslessScan::StartMeasureScan
void LosslessScan::StartMeasureScan(class BufferCtrl *ctrl)
{
#if ACCUSOFT_CODE
int i;
FindComponentDimensions();
for(i = 0;i < m_ucCount;i++) {
m_pDCCoder[i] = NULL;
m_pDCStatistics[i] = m_pScan->DCHuffmanStatisticsOf(i);
}
assert(ctrl->isLineBased());
m_pLineCtrl = dynamic_cast<LineBuffer *>(ctrl);
m_pLineCtrl->ResetToStartOfScan(m_pScan);
m_Stream.OpenForWrite(NULL,NULL);
m_bMeasure = true;
#else
NOREF(ctrl);
#endif
}
///
/// LosslessScan::WriteMCU
// Write a single MCU in this scan. Actually, this is not quite true,
// as we write an entire group of eight lines of pixels, as a MCU is
// here a group of pixels. But it is more practical this way.
bool LosslessScan::WriteMCU(void)
{
#if ACCUSOFT_CODE
int i;
struct Line *top[4],*prev[4];
int lines = 8; // total number of MCU lines processed.
for(i = 0;i < m_ucCount;i++) {
class Component *comp = ComponentOf(i);
UBYTE idx = comp->IndexOf();
top[i] = m_pLineCtrl->CurrentLineOf(idx);
prev[i] = m_pLineCtrl->PreviousLineOf(idx);
m_ulX[i] = 0;
m_ulY[i] = m_pLineCtrl->CurrentYOf(idx);
}
// Loop over lines and columns
do {
do {
BeginWriteMCU(m_Stream.ByteStreamOf());
//
if (m_bMeasure) {
MeasureMCU(prev,top);
} else {
WriteMCU(prev,top);
}
} while(AdvanceToTheRight());
//
// Advance to the next line.
} while(AdvanceToTheNextLine(prev,top) && --lines);
#endif
return false;
}
///
/// LosslessScan::WriteMCU
// The actual MCU-writer, write a single group of pixels to the stream,
// or measure their statistics.
void LosslessScan::WriteMCU(struct Line **prev,struct Line **top)
{
#if ACCUSOFT_CODE
UBYTE i;
//
// Parse a single MCU, which is now a group of pixels.
for(i = 0;i < m_ucCount;i++) {
class HuffmanCoder *dc = m_pDCCoder[i];
struct Line *line = top[i];
struct Line *pline= prev[i];
class PredictorBase *mcupred = m_pPredict[i];
UBYTE ym = m_ucMCUHeight[i];
LONG *lp = line->m_pData + m_ulX[i];
LONG *pp = (pline)?(pline->m_pData + m_ulX[i]):(NULL);
//
// Write MCUwidth * MCUheight coefficients starting at the line top.
do {
class PredictorBase *pred = mcupred;
UBYTE xm = m_ucMCUWidth[i];
do {
// Decode now the difference between the predicted value and
// the real value.
LONG v = pred->EncodeSample(lp,pp);
//
if (v == 0) {
dc->Put(&m_Stream,0);
} else if (v == MIN_WORD) {
dc->Put(&m_Stream,16); // Do not append bits
} else {
UBYTE symbol = 0;
do {
symbol++;
if (v > -(1 << symbol) && v < (1 << symbol)) {
dc->Put(&m_Stream,symbol);
if (v >= 0) {
m_Stream.Put(symbol,v);
} else {
m_Stream.Put(symbol,v - 1);
}
break;
}
} while(true);
}
//
// One pixel done. Proceed to the next in the MCU. Note that
// the lines have been extended such that always a complete MCU is present.
} while(--xm && (lp++,pp++,pred = pred->MoveRight(),true));
//
// Go to the next line.
} while(--ym && (pp = line->m_pData + m_ulX[i],line = (line->m_pNext)?(line->m_pNext):(line),
lp = line->m_pData + m_ulX[i],mcupred = mcupred->MoveDown(),true));
}
#else
NOREF(prev);
NOREF(top);
#endif
}
///
/// LosslessScan::MeasureMCU
// The actual MCU-writer, write a single group of pixels to the stream,
// or measure their statistics. This here only measures the statistics
// to design an optimal Huffman table
void LosslessScan::MeasureMCU(struct Line **prev,struct Line **top)
{
#if ACCUSOFT_CODE
UBYTE i;
//
// Parse a single MCU, which is now a group of pixels.
for(i = 0;i < m_ucCount;i++) {
class HuffmanStatistics *dcstat = m_pDCStatistics[i];
struct Line *line = top[i];
struct Line *pline= prev[i];
class PredictorBase *mcupred = m_pPredict[i];
UBYTE ym = m_ucMCUHeight[i];
LONG *lp = line->m_pData + m_ulX[i];
LONG *pp = (pline)?(pline->m_pData + m_ulX[i]):(NULL);
//
//
// Write MCUwidth * MCUheight coefficients starting at the line top.
do {
class PredictorBase *pred = mcupred;
UBYTE xm = m_ucMCUWidth[i];
do {
// Decode now the difference between the predicted value and
// the real value.
LONG v = pred->EncodeSample(lp,pp);
//
if (v == 0) {
dcstat->Put(0);
} else if (v == -32768) {
dcstat->Put(16); // Do not append bits
} else {
UBYTE symbol = 0;
do {
symbol++;
if (v > -(1 << symbol) && v < (1 << symbol)) {
dcstat->Put(symbol);
break;
}
} while(true);
}
//
// One pixel done. Proceed to the next in the MCU. Note that
// the lines have been extended such that always a complete MCU is present.
} while(--xm && (lp++,pp++,pred = pred->MoveRight(),true));
//
// Go to the next line.
} while(--ym && (pp = line->m_pData + m_ulX[i],line = (line->m_pNext)?(line->m_pNext):(line),
lp = line->m_pData + m_ulX[i],mcupred = mcupred->MoveDown(),true));
}
#else
NOREF(prev);
NOREF(top);
#endif
}
///
/// LosslessScan::ParseMCU
// This is actually the true MCU-parser, not the interface that reads
// a full line.
void LosslessScan::ParseMCU(struct Line **prev,struct Line **top)
{
#if ACCUSOFT_CODE
UBYTE i;
//
// Parse a single MCU, which is now a group of pixels.
for(i = 0;i < m_ucCount;i++) {
class HuffmanDecoder *dc = m_pDCDecoder[i];
struct Line *line = top[i];
struct Line *pline= prev[i];
UBYTE ym = m_ucMCUHeight[i];
class PredictorBase *mcupred = m_pPredict[i];
LONG *lp = line->m_pData + m_ulX[i];
LONG *pp = (pline)?(pline->m_pData + m_ulX[i]):(NULL);
//
// Parse MCUwidth * MCUheight coefficients starting at the line top.
do {
class PredictorBase *pred = mcupred;
UBYTE xm = m_ucMCUWidth[i];
do {
LONG v;
UBYTE symbol = dc->Get(&m_Stream);
if (symbol == 0) {
v = 0;
} else if (symbol == 16) {
v = -32768;
} else if (symbol > 16) {
JPG_THROW(MALFORMED_STREAM,"LosslessScan::ParseMCU",
"received an out-of-bounds symbol in a lossless JPEG scan");
} else {
LONG thre = 1L << (symbol - 1);
LONG diff = m_Stream.Get(symbol); // get the number of bits
if (diff < thre) {
diff += (-1L << symbol) + 1;
}
v = diff;
}
//
// Set the current pixel, do the inverse pointwise transformation.
lp[0] = pred->DecodeSample(v,lp,pp);
//
// One pixel done. Proceed to the next in the MCU. Note that
// the lines have been extended such that always a complete MCU is present.
} while(--xm && (lp++,pp++,pred = pred->MoveRight(),true));
//
// Go to the next line.
} while(--ym && (pp = line->m_pData + m_ulX[i],line = (line->m_pNext)?(line->m_pNext):(line),
lp = line->m_pData + m_ulX[i],mcupred = mcupred->MoveDown(),true));
}
#else
NOREF(prev);
NOREF(top);
#endif
}
///
/// LosslessScan::ParseMCU
// Parse a single MCU in this scan. Actually, this is not quite true,
// as we write an entire group of eight lines of pixels, as a MCU is
// here a group of pixels. But it is more practical this way.
bool LosslessScan::ParseMCU(void)
{
#if ACCUSOFT_CODE
int i;
struct Line *top[4],*prev[4];
int lines = 8; // total number of MCU lines processed.
for(i = 0;i < m_ucCount;i++) {
class Component *comp = ComponentOf(i);
UBYTE idx = comp->IndexOf();
top[i] = m_pLineCtrl->CurrentLineOf(idx);
prev[i] = m_pLineCtrl->PreviousLineOf(idx);
m_ulX[i] = 0;
m_ulY[i] = m_pLineCtrl->CurrentYOf(idx);
}
// Loop over lines and columns
do {
do {
if (BeginReadMCU(m_Stream.ByteStreamOf())) {
ParseMCU(prev,top);
} else {
// Only if this is not due to a DNL marker that has been detected.
if (m_ulPixelHeight != 0 && !hasFoundDNL()) {
ClearMCU(top);
} else {
// The problem is here that the DNL marker might have been detected, even though decoding
// is not yet done completely. This may be because there are still just enough bits in the
// bitream present to run a single decode. Big Outch! Just continue decoding in this case.
ParseMCU(prev,top);
}
}
} while(AdvanceToTheRight());
//
// Advance to the next line.
} while(AdvanceToTheNextLine(prev,top) && --lines);
#endif
return false; // no further blocks here.
}
///
/// LosslessScan::StartMCURow
// Start a MCU scan. Returns true if there are more rows.
bool LosslessScan::StartMCURow(void)
{
#if ACCUSOFT_CODE
return m_pLineCtrl->StartMCUQuantizerRow(m_pScan);
#else
return false;
#endif
}
///
/// LosslessScan::Flush
// Flush the remaining bits out to the stream on writing.
void LosslessScan::Flush(bool)
{
#if ACCUSOFT_CODE
if (!m_bMeasure)
m_Stream.Flush();
PredictiveScan::FlushOnMarker();
#endif
}
///
/// LosslessScan::Restart
// Restart the parser at the next restart interval
void LosslessScan::Restart(void)
{
#if ACCUSOFT_CODE
m_Stream.OpenForRead(m_Stream.ByteStreamOf(),m_Stream.ChecksumOf());
PredictiveScan::RestartOnMarker();
#endif
}
///
|