File: predictivescan.cpp

package info (click to toggle)
libjpeg 0.0~git20241105.c719010-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,904 kB
  • sloc: cpp: 36,434; makefile: 618; ansic: 275; sh: 54; python: 39; perl: 11
file content (246 lines) | stat: -rw-r--r-- 7,622 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
/*************************************************************************

    This project implements a complete(!) JPEG (Recommendation ITU-T
    T.81 | ISO/IEC 10918-1) codec, plus a library that can be used to
    encode and decode JPEG streams. 
    It also implements ISO/IEC 18477 aka JPEG XT which is an extension
    towards intermediate, high-dynamic-range lossy and lossless coding
    of JPEG. In specific, it supports ISO/IEC 18477-3/-6/-7/-8 encoding.

    Note that only Profiles C and D of ISO/IEC 18477-7 are supported
    here. Check the JPEG XT reference software for a full implementation
    of ISO/IEC 18477-7.

    Copyright (C) 2012-2018 Thomas Richter, University of Stuttgart and
    Accusoft. (C) 2019-2020 Thomas Richter, Fraunhofer IIS.

    This program is available under two licenses, GPLv3 and the ITU
    Software licence Annex A Option 2, RAND conditions.

    For the full text of the GPU license option, see README.license.gpl.
    For the full text of the ITU license option, see README.license.itu.
    
    You may freely select between these two options.

    For the GPL option, please note the following:

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see <http://www.gnu.org/licenses/>.

*************************************************************************/
/*
**
** This is the base class for all predictive scan types, it provides the
** services useful to implement them such that the derived classes can
** focus on the actual algorithm.
**
** $Id: predictivescan.cpp,v 1.16 2024/11/05 06:39:25 thor Exp $
**
*/

/// Includes
#include "codestream/predictivescan.hpp"
#include "io/bytestream.hpp"
#include "marker/frame.hpp"
#include "marker/scan.hpp"
#include "marker/component.hpp"
#include "codestream/tables.hpp"
#include "codestream/predictorbase.hpp"
#include "tools/line.hpp"
///

/// PredictiveScan::PredictiveScan
PredictiveScan::PredictiveScan(class Frame *frame,class Scan *scan,UBYTE predictor,UBYTE lowbit,bool differential)
  : EntropyParser(frame,scan)
#if ACCUSOFT_CODE
  , m_pLineCtrl(NULL), m_ucPredictor(predictor), m_ucLowBit(lowbit),
    m_bDifferential(differential)
#endif
{ 
#if ACCUSOFT_CODE
  m_ucCount = scan->ComponentsInScan();
  memset(m_pPredictors ,0,sizeof(m_pPredictors));
  memset(m_pPredict    ,0,sizeof(m_pPredict));
  memset(m_pLinePredict,0,sizeof(m_pLinePredict));
#else
  NOREF(predictor);
  NOREF(lowbit);
  NOREF(differential);
#endif
}
///

/// PredictiveScan::~PredictiveScan
PredictiveScan::~PredictiveScan(void)
{
#if ACCUSOFT_CODE
  for(int i = 0;i < 4;i++) {
    delete m_pPredictors[i];
  }
#endif
}
///

/// PredictiveScan::FindComponentDimensions
// Collect the component information.
void PredictiveScan::FindComponentDimensions(void)
{ 
#if ACCUSOFT_CODE
  int i;

  m_ulPixelWidth  = m_pFrame->WidthOf();
  m_ulPixelHeight = m_pFrame->HeightOf();

  if (m_pPredictors[0] == NULL) {
    PredictorBase::CreatePredictorChain(m_pEnviron,m_pPredictors,
                                        (m_bDifferential)?(PredictorBase::None):
                                        (PredictorBase::PredictionMode(m_ucPredictor)),
                                        FractionalColorBitsOf() + m_ucLowBit,(1L << m_pFrame->PrecisionOf()) >> 1);
  }

  for(i = 0;i < m_ucCount;i++) {
    class Component *comp = ComponentOf(i);
    UBYTE subx            = comp->SubXOf();
    UBYTE suby            = comp->SubYOf();
    
    m_ulWidth[i]          = (m_ulPixelWidth  + subx - 1) / subx;
    m_ulHeight[i]         = (m_ulPixelHeight + suby - 1) / suby; 
    m_ucMCUWidth[i]       = comp->MCUWidthOf();
    m_ucMCUHeight[i]      = comp->MCUHeightOf();
    m_ulX[i]              = 0;
    m_ulY[i]              = 0;
    m_pPredict[i]         = m_pPredictors[0]; // always start with the top-left predictor.
    m_pLinePredict[i]     = m_pPredictors[0];
  }

  if (m_ucCount == 1) {
    m_ucMCUWidth[0]  = 1;
    m_ucMCUHeight[0] = 1;
  }
#endif 
}
///


/// PredictiveScan::ClearMCU
// Clear the entire MCU
void PredictiveScan::ClearMCU(struct Line **top)
{ 
#if ACCUSOFT_CODE
  for(int i = 0;i < m_ucCount;i++) {
    class Component *comp = ComponentOf(i);
    struct Line *line     = top[i];
    UBYTE ym              = comp->MCUHeightOf();
    LONG neutral          = ((1L << m_pFrame->PrecisionOf()) >> 1) << FractionalColorBitsOf();
    //
    do {
      LONG *p = line->m_pData;
      LONG *e = line->m_pData + m_ulWidth[i];
      do {
        *p = neutral;
      } while(++p < e);

      if (line->m_pNext)
        line = line->m_pNext;
    } while(--ym);
  }
#else
  NOREF(top);
#endif
}
///

/// PredictiveScan::Flush
// Flush at the end of a restart interval
// when writing out code. Reset predictors, check
// for the correctness of the restart alignment.
void PredictiveScan::FlushOnMarker(void)
{
#if ACCUSOFT_CODE
  int i;
  
  for(i = 0;i < m_ucCount;i++) {
    if (m_ulX[i]) {
      JPG_WARN(MALFORMED_STREAM,"LosslessScan::Flush",
               "found restart marker in the middle of the line, expect corrupt results");
      break;
    }
    // Restart prediction from top-left.
    m_pPredict[i]     = m_pPredictors[0];
    m_pLinePredict[i] = m_pPredictors[0];
  } 
#endif
}
///

/// PredictiveScan::Restart
// Restart after reading a full restart interval,
// reset the predictors, check for the correctness
// of the restart interval.
void PredictiveScan::RestartOnMarker(void)
{
#if ACCUSOFT_CODE
  int i;
  
  for(i = 0;i < m_ucCount;i++) {
    if (m_ulX[i]) {
      JPG_WARN(MALFORMED_STREAM,"LosslessScan::Restart",
               "found restart marker in the middle of the line, expect corrupt results");
      break;
    }
    // Restart prediction from top-left.
    m_pPredict[i]     = m_pPredictors[0];
    m_pLinePredict[i] = m_pPredictors[0];
  }
#endif
}
///

/// PredictiveScan::PostImageHeight
// Post the height of the image in lines. This happens when the DNL
// marker is processed.
void PredictiveScan::PostImageHeight(ULONG height)
{
  m_ulPixelHeight = height;
}
///

/// PredictiveScan::OptimizeBlock
// Make an R/D optimization for the given scan by potentially pushing
// coefficients into other bins. 
void PredictiveScan::OptimizeBlock(LONG, LONG ,UBYTE ,double ,
                                   class DCT *,LONG [64])
{
  JPG_THROW(NOT_IMPLEMENTED,"PredictiveScan::OptimizeBlock",
            "Rate-distortion optimization is not available for line-based coding modes");
}
///

/// PredictiveScan::OptimizeDC
// Make an R/D optimization for the given scan by potentially pushing
// coefficients into other bins. 
void PredictiveScan::OptimizeDC(void)
{
  JPG_THROW(NOT_IMPLEMENTED,"PredictiveScan::OptimizeDC",
            "Rate-distortion optimization is not available for line-based coding modes");
}
///

/// PredictiveScan::StartOptimizeScan
// Start making an optimization run to adjust the coefficients.
void PredictiveScan::StartOptimizeScan(class BufferCtrl *)
{  
  JPG_THROW(NOT_IMPLEMENTED,"PredictiveScan::StartOptimizeScan",
            "Line-based modes do not support R/D optimization");
}
///