1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
|
/*************************************************************************
This project implements a complete(!) JPEG (Recommendation ITU-T
T.81 | ISO/IEC 10918-1) codec, plus a library that can be used to
encode and decode JPEG streams.
It also implements ISO/IEC 18477 aka JPEG XT which is an extension
towards intermediate, high-dynamic-range lossy and lossless coding
of JPEG. In specific, it supports ISO/IEC 18477-3/-6/-7/-8 encoding.
Note that only Profiles C and D of ISO/IEC 18477-7 are supported
here. Check the JPEG XT reference software for a full implementation
of ISO/IEC 18477-7.
Copyright (C) 2012-2018 Thomas Richter, University of Stuttgart and
Accusoft. (C) 2019-2020 Thomas Richter, Fraunhofer IIS.
This program is available under two licenses, GPLv3 and the ITU
Software licence Annex A Option 2, RAND conditions.
For the full text of the GPU license option, see README.license.gpl.
For the full text of the ITU license option, see README.license.itu.
You may freely select between these two options.
For the GPL option, please note the following:
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*************************************************************************/
/*
**
** This is the base class for all predictive scan types, it provides the
** services useful to implement them such that the derived classes can
** focus on the actual algorithm.
**
** $Id: predictivescan.hpp,v 1.13 2024/11/05 06:39:25 thor Exp $
**
*/
#ifndef CODESTREAM_PREDICTIVESCAN_HPP
#define CODESTREAM_PREDICTIVESCAN_HPP
/// Includes
#include "tools/environment.hpp"
#include "codestream/entropyparser.hpp"
#include "codestream/predictorbase.hpp"
#include "tools/line.hpp"
///
/// Forwards
class Frame;
class LineCtrl;
class ByteStream;
class LineBitmapRequester;
class LineBuffer;
class LineAdapter;
class Scan;
///
/// class PredictiveScan
// This is the base class for all predictive scan types, it provides the
// services useful to implement them such that the derived classes can
// focus on the actual algorithm.
class PredictiveScan : public EntropyParser {
//
// Services for the derived classes.
protected:
//
#if ACCUSOFT_CODE
//
// The class used for pulling and pushing data.
class LineBuffer *m_pLineCtrl;
//
// Dimension of the frame in full pixels.
ULONG m_ulPixelWidth;
ULONG m_ulPixelHeight;
//
// Dimensions of the components.
ULONG m_ulWidth[4];
ULONG m_ulHeight[4];
//
// Current pixel positions.
ULONG m_ulX[4];
ULONG m_ulY[4];
//
// MCU dimensions.
UBYTE m_ucMCUWidth[4];
UBYTE m_ucMCUHeight[4];
//
// The currently active predictors for the MCU processed.
class PredictorBase *m_pPredict[4];
class PredictorBase *m_pLinePredict[4];
//
// The predictor to use.
UBYTE m_ucPredictor;
//
// The low bit for the point transform.
UBYTE m_ucLowBit;
//
// Encoding a differential scan.
bool m_bDifferential;
//
// The predictors used to encode or decode the scan.
// Prediction always starts with the entry [0] and then
// uses the down/right functions to advance the predictor.
class PredictorBase *m_pPredictors[4];
//
#endif
// Collect component information and install the component dimensions.
void FindComponentDimensions(void);
//
// Clear the entire MCU
void ClearMCU(struct Line **top);
//
#if ACCUSOFT_CODE
//
// Advance to the next MCU to the right. Returns true if there
// are more MCUs to the right.
bool AdvanceToTheRight(void)
{
UBYTE i;
bool more;
for(i = 0,more = true;i < m_ucCount;i++) {
m_ulX[i] += m_ucMCUWidth[i];
m_pPredict[i] = m_pPredict[i]->MoveRight();
if (m_ulX[i] >= m_ulWidth[i])
more = false;
}
return more;
}
//
// Advance to the next MCU to the bottom. Returns true if there are more
// MCUs below.
bool AdvanceToTheNextLine(struct Line **prev,struct Line **top)
{
UBYTE i;
bool more;
//
// Advance to the next line.
for(i = 0,more = true;i < m_ucCount;i++) {
UBYTE cnt = m_ucMCUHeight[i];
m_ulX[i] = 0;
m_ulY[i] += cnt;
m_pLinePredict[i] = m_pLinePredict[i]->MoveDown();
m_pPredict[i] = m_pLinePredict[i];
if (m_ulHeight[i] && m_ulY[i] >= m_ulHeight[i]) {
more = false;
} else do {
prev[i] = top[i];
if (top[i]->m_pNext) {
top[i] = top[i]->m_pNext;
}
} while(--cnt);
}
return more;
}
//
#endif
//
// Build a predictive scan: This is not stand alone, let subclasses do that.
PredictiveScan(class Frame *frame,class Scan *scan,UBYTE predictor,UBYTE lowbit,
bool differential = false);
//
// Destroy a predictive scan.
virtual ~PredictiveScan(void);
//
// Everything else goes into the derivced classes.
//
// Parse a single MCU in this scan. Return true if there are more
// MCUs in this row.
virtual bool ParseMCU(void) = 0;
//
// Write a single MCU in this scan.
virtual bool WriteMCU(void) = 0;
//
// Flush at the end of a restart interval
// when writing out code. Reset predictors, check
// for the correctness of the restart alignment.
void FlushOnMarker(void);
//
// Restart after reading a full restart interval,
// reset the predictors, check for the correctness
// of the restart interval.
void RestartOnMarker(void);
//
// Start making an optimization run to adjust the coefficients.
virtual void StartOptimizeScan(class BufferCtrl *ctrl);
//
// Post the height of the image in lines. This happens when the DNL
// marker is processed.
virtual void PostImageHeight(ULONG height);
//
// Make an R/D optimization for the given scan by potentially pushing
// coefficients into other bins.
virtual void OptimizeBlock(LONG bx,LONG by,UBYTE component,double critical,
class DCT *dct,LONG quantized[64]);
//
// Make an R/D optimization of the DC scan. This includes all DC blocks in
// total, not just a single block. This is because the coefficients are not
// coded independently.
virtual void OptimizeDC(void);
};
///
///
#endif
|