1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
|
/*************************************************************************
This project implements a complete(!) JPEG (Recommendation ITU-T
T.81 | ISO/IEC 10918-1) codec, plus a library that can be used to
encode and decode JPEG streams.
It also implements ISO/IEC 18477 aka JPEG XT which is an extension
towards intermediate, high-dynamic-range lossy and lossless coding
of JPEG. In specific, it supports ISO/IEC 18477-3/-6/-7/-8 encoding.
Note that only Profiles C and D of ISO/IEC 18477-7 are supported
here. Check the JPEG XT reference software for a full implementation
of ISO/IEC 18477-7.
Copyright (C) 2012-2018 Thomas Richter, University of Stuttgart and
Accusoft. (C) 2019-2020 Thomas Richter, Fraunhofer IIS.
This program is available under two licenses, GPLv3 and the ITU
Software licence Annex A Option 2, RAND conditions.
For the full text of the GPU license option, see README.license.gpl.
For the full text of the ITU license option, see README.license.itu.
You may freely select between these two options.
For the GPL option, please note the following:
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*************************************************************************/
/*
**
** A subsequent (refinement) scan of a progressive scan.
**
** $Id: refinementscan.cpp,v 1.45 2022/08/03 08:49:34 thor Exp $
**
*/
/// Includes
#include "codestream/refinementscan.hpp"
#include "codestream/tables.hpp"
#include "marker/frame.hpp"
#include "marker/component.hpp"
#include "coding/huffmantemplate.hpp"
#include "coding/huffmancoder.hpp"
#include "coding/huffmandecoder.hpp"
#include "coding/huffmanstatistics.hpp"
#include "coding/quantizedrow.hpp"
#include "codestream/rectanglerequest.hpp"
#include "dct/dct.hpp"
#include "std/assert.hpp"
#include "interface/bitmaphook.hpp"
#include "interface/imagebitmap.hpp"
#include "colortrafo/colortrafo.hpp"
#include "tools/traits.hpp"
#include "control/blockbuffer.hpp"
#include "control/blockbitmaprequester.hpp"
#include "control/blocklineadapter.hpp"
///
/// RefinementScan::RefinementScan
RefinementScan::RefinementScan(class Frame *frame,class Scan *scan,
UBYTE start,UBYTE stop,UBYTE lowbit,UBYTE highbit,
bool,bool residual)
: EntropyParser(frame,scan), m_ACBuffer(frame->EnvironOf(),256), m_pBlockCtrl(NULL),
m_ucScanStart(start), m_ucScanStop(stop), m_ucLowBit(lowbit), m_ucHighBit(highbit),
m_bResidual(residual)
{
m_ucCount = scan->ComponentsInScan();
for(int i = 0;i < 4;i++) {
m_pACDecoder[i] = NULL;
m_pACCoder[i] = NULL;
m_pACStatistics[i] = NULL;
}
assert(m_ucHighBit == m_ucLowBit + 1);
}
///
/// RefinementScan::~RefinementScan
RefinementScan::~RefinementScan(void)
{
}
///
/// RefinementScan::StartParseScan
void RefinementScan::StartParseScan(class ByteStream *io,class Checksum *chk,class BufferCtrl *ctrl)
{
int i;
//
// A DC coder for the huffman part is not required.
for(i = 0;i < m_ucCount;i++) {
if (m_ucScanStop || m_bResidual) {
m_pACDecoder[i] = m_pScan->ACHuffmanDecoderOf(i);
if (m_pACDecoder[i] == NULL)
JPG_THROW(MALFORMED_STREAM,"SequentialScan::StartParseScan",
"Huffman decoder not specified for all components included in scan");
} else {
m_pACDecoder[i] = NULL; // not required, is DC only.
}
m_ulX[i] = 0;
m_usSkip[i] = 0;
}
assert(!ctrl->isLineBased());
m_pBlockCtrl = dynamic_cast<BlockCtrl *>(ctrl);
m_pBlockCtrl->ResetToStartOfScan(m_pScan);
m_Stream.OpenForRead(io,chk);
}
///
/// RefinementScan::StartWriteScan
void RefinementScan::StartWriteScan(class ByteStream *io,class Checksum *chk,class BufferCtrl *ctrl)
{
int i;
for(i = 0;i < m_ucCount;i++) {
if (m_ucScanStop || m_bResidual) {
m_pACCoder[i] = m_pScan->ACHuffmanCoderOf(i);
} else {
m_pACCoder[i] = NULL;
}
m_pACStatistics[i] = NULL;
m_ulX[i] = 0;
m_usSkip[i] = 0;
}
m_bMeasure = false;
assert(!ctrl->isLineBased());
m_pBlockCtrl = dynamic_cast<BlockCtrl *>(ctrl);
m_pBlockCtrl->ResetToStartOfScan(m_pScan);
EntropyParser::StartWriteScan(io,chk,ctrl);
m_pScan->WriteMarker(io);
m_Stream.OpenForWrite(io,chk);
}
///
/// RefinementScan::StartMeasureScan
// Measure scan statistics.
void RefinementScan::StartMeasureScan(class BufferCtrl *ctrl)
{
int i;
for(i = 0;i < m_ucCount;i++) {
m_pACCoder[i] = NULL;
if (m_ucScanStop) {
m_pACStatistics[i] = m_pScan->ACHuffmanStatisticsOf(i);
} else {
m_pACStatistics[i] = NULL;
}
m_ulX[i] = 0;
m_usSkip[i] = 0;
}
m_bMeasure = true;
assert(!ctrl->isLineBased());
m_pBlockCtrl = dynamic_cast<BlockCtrl *>(ctrl);
m_pBlockCtrl->ResetToStartOfScan(m_pScan);
EntropyParser::StartWriteScan(NULL,NULL,ctrl);
m_Stream.OpenForWrite(NULL,NULL);
}
///
/// RefinementScan::StartMCURow
// Start a MCU scan. Returns true if there are more rows.
bool RefinementScan::StartMCURow(void)
{
bool more = m_pBlockCtrl->StartMCUQuantizerRow(m_pScan);
for(int i = 0;i < m_ucCount;i++) {
m_ulX[i] = 0;
}
return more;
}
///
/// RefinementScan::Flush
// Flush the remaining bits out to the stream on writing.
void RefinementScan::Flush(bool)
{
if (m_ucScanStart || m_bResidual) {
// Progressive, AC band. It looks weird to code the remaining
// block skips right here. However, AC bands in spectral selection
// are always coded in isolated scans, thus only one component
// per scan and no interleaving. Hence, no problem.
assert(m_ucCount == 1);
if (m_usSkip[0]) {
// Flush out any pending block
if (m_pACStatistics[0]) { // only count.
UBYTE symbol = 0;
while(m_usSkip[0] >= (1L << symbol))
symbol++;
m_pACStatistics[0]->Put((symbol - 1) << 4);
m_usSkip[0] = 0;
} else {
CodeBlockSkip(m_pACCoder[0],m_usSkip[0]);
}
}
}
if (!m_bMeasure)
m_Stream.Flush();
}
///
/// RefinementScan::Restart
// Restart the parser at the next restart interval
void RefinementScan::Restart(void)
{
for(int i = 0; i < m_ucCount;i++) {
m_usSkip[i] = 0;
}
m_Stream.OpenForRead(m_Stream.ByteStreamOf(),m_Stream.ChecksumOf());
}
///
/// RefinementScan::WriteMCU
// Write a single MCU in this scan. Return true if there are more blocks in this row.
bool RefinementScan::WriteMCU(void)
{
bool more = true;
int c;
assert(m_pBlockCtrl);
BeginWriteMCU(m_bMeasure?NULL:m_Stream.ByteStreamOf());
for(c = 0;c < m_ucCount;c++) {
class Component *comp = m_pComponent[c];
class QuantizedRow *q = m_pBlockCtrl->CurrentQuantizedRow(comp->IndexOf());
class HuffmanCoder *ac = m_pACCoder[c];
class HuffmanStatistics *acstat = m_pACStatistics[c];
UWORD &skip = m_usSkip[c];
UBYTE mcux = (m_ucCount > 1)?(comp->MCUWidthOf() ):(1);
UBYTE mcuy = (m_ucCount > 1)?(comp->MCUHeightOf()):(1);
ULONG xmin = m_ulX[c];
ULONG xmax = xmin + mcux;
ULONG x,y;
if (xmax >= q->WidthOf()) {
more = false;
}
for(y = 0;y < mcuy;y++) {
for(x = xmin;x < xmax;x++) {
LONG *block,dummy[64];
if (q && x < q->WidthOf()) {
block = q->BlockAt(x)->m_Data;
} else {
block = dummy;
memset(dummy ,0,sizeof(dummy) );
}
if (m_bMeasure) {
MeasureBlock(block,acstat,skip);
} else {
EncodeBlock(block,ac,skip);
}
}
if (q) q = q->NextOf();
}
// Done with this component, advance the block.
m_ulX[c] = xmax;
}
return more;
}
///
/// RefinementScan::ParseMCU
// Parse a single MCU in this scan. Return true if there are more blocks in this row.
bool RefinementScan::ParseMCU(void)
{
bool more = true;
int c;
assert(m_pBlockCtrl);
bool valid = BeginReadMCU(m_Stream.ByteStreamOf());
for(c = 0;c < m_ucCount;c++) {
class Component *comp = m_pComponent[c];
class QuantizedRow *q = m_pBlockCtrl->CurrentQuantizedRow(comp->IndexOf());
class HuffmanDecoder *ac = m_pACDecoder[c];
UWORD &skip = m_usSkip[c];
UBYTE mcux = (m_ucCount > 1)?(comp->MCUWidthOf() ):(1);
UBYTE mcuy = (m_ucCount > 1)?(comp->MCUHeightOf()):(1);
ULONG xmin = m_ulX[c];
ULONG xmax = xmin + mcux;
ULONG x,y;
if (xmax >= q->WidthOf()) {
more = false;
}
for(y = 0;y < mcuy;y++) {
for(x = xmin;x < xmax;x++) {
LONG *block,dummy[64];
if (q && x < q->WidthOf()) {
block = q->BlockAt(x)->m_Data;
} else {
block = dummy;
}
if (valid) {
DecodeBlock(block,ac,skip);
}
// Do not modify the data in here otherwise, keep the data unrefined...
// actually, all further refinement scans should better be skipped as the
// data is likely nonsense anyhow.
}
if (q) q = q->NextOf();
}
// Done with this component, advance the block.
m_ulX[c] = xmax;
}
return more;
}
///
/// RefinementScan::MeasureBlock
// Make a block statistics measurement on the source data.
void RefinementScan::MeasureBlock(const LONG *block,
class HuffmanStatistics *ac,
UWORD &skip)
{
bool relevant = false;
// DC coding does not undergo huffman coding and hence
// does not change anything.
// AC coding
if (m_ucScanStop || m_bResidual) {
UBYTE run = 0;
int k = m_ucScanStart;
//
// Must be separate from the DC coding.
assert(m_ucScanStart || m_bResidual);
do {
LONG prev,data = block[DCT::ScanOrder[k]];
// Check whether this is refinement coding or a a new coefficient.
// Refinement codes are not huffman coded and hence not included
// here.
prev = (data >= 0)?(data >> m_ucHighBit):(-((-data) >> m_ucHighBit));
if (prev == 0) {
// Not refinement coding. Huffman codes are used.
data = (data >= 0)?(data >> m_ucLowBit):(-((-data) >> m_ucLowBit));
if (data == 0) {
run++;
} else {
// Code (or compute the length of) any missing zero run.
if (skip) {
UBYTE sksymbol = 0;
while(skip >= (1L << sksymbol))
sksymbol++;
ac->Put((sksymbol - 1) << 4);
skip = 0;
}
// First ensure that the run is at most 15, the largest cathegory.
while(run > 15) {
ac->Put(0xf0); // r = 15 and s = 0
run -= 16;
}
ac->Put(1 | (run << 4));
// Refinement data is not Huffman coded, ignore.
// Run is over.
run = 0;
// significant coefficients would have been coded here.
relevant = false;
}
} else {
relevant = true; // some relevant coefficients have been skipped
}
} while(++k <= m_ucScanStop);
// Is there still an open run? If so, code an EOB.
if (run || relevant) {
skip++;
if (skip == MAX_WORD) {
ac->Put(0xe0); // symbol for maximum length
skip = 0;
}
}
}
}
///
/// RefinementScan::CodeBlockSkip
// Code any run of zero blocks here. This is only valid in
// the progressive mode.
void RefinementScan::CodeBlockSkip(class HuffmanCoder *ac,UWORD &skip)
{
if (skip) {
UBYTE symbol = 0;
do {
symbol++;
if (skip < (1L << symbol)) {
symbol--;
assert(symbol <= 14);
ac->Put(&m_Stream,symbol << 4);
if (symbol)
m_Stream.Put(symbol,skip);
skip = 0;
break;
}
} while(true);
//
// Code any remaining AC refinement data.
{
LONG data;
class MemoryStream readback(m_pEnviron,&m_ACBuffer,JPGFLAG_OFFSET_BEGINNING);
//
while((data = readback.Get()) != ByteStream::EOF) {
// Only the magnitude counts.
m_Stream.Put<1>(data);
}
m_ACBuffer.Clean();
}
}
}
///
/// RefinementScan::EncodeBlock
// Encode a single huffman block
void RefinementScan::EncodeBlock(const LONG *block,class HuffmanCoder *ac,UWORD &skip)
{
UBYTE refinement[64],*br = refinement; // runlength refinement buffer.
//
// DC coding
if (m_ucScanStart == 0 && m_bResidual == false) {
// Symbols are not DPCM encoded, but the remaining bits are simply encoded
// in raw.
m_Stream.Put<1>(block[0] >> m_ucLowBit);
}
// AC coding
if (m_ucScanStop || m_bResidual) {
UBYTE run = 0,group = 0;
int k = m_ucScanStart;
assert(m_ucScanStart || m_bResidual); // AC must be coded separately from DC
do {
LONG data = block[DCT::ScanOrder[k]];
LONG prev; // Data in the previous scan, might be zero or non-zero
// Implement the point transformation. This is here a division, not
// a shift (rounding is different for negative numbers).
prev = (data >= 0)?(data >> m_ucHighBit):(-((-data) >> m_ucHighBit));
data = (data >= 0)?(data >> m_ucLowBit):(-((-data) >> m_ucLowBit));
if (prev) {
// This is a coefficient which was nonzero in the scan before and
// hence only undergoes refinement coding. It is skipped for the
// purpose of runlength coding. Interestingly, the refinement
// coding is defined in a somewhat weird way where the "correction"
// bits are coded behind a run, but not necessarily behind the
// "nearest" run. Instead, correction bits go beyond either the first
// coefficient that becomes significant, or beyond the first run
// that crosses a runlength of 16, unless that run is at the
// end of the block. To avoid going through the block twice to
// detect the latter condition, we need to keep track within
// which block of run-16 runs a correction bit goes.
// The original flowchart from G-7 would now flush out the remaining
// runs that cross the 16-run boundary. Instead, we just increment
// the group counter to keep track of them and reset the run to
// what the described flowchart would have done.
group += (run >> 4) << 1; // number of 16-wrap-arounds
run &= 0x0f; // remaining runs.
//
// Buffer the correction bit, plus the group where it belongs.
*br++ = (data & 0x01) | group;
} else {
if (data == 0) {
run++;
} else {
UBYTE *b = refinement;
UBYTE g = 0;
// Are there any skipped blocks we still need to code? Since this
// block is none of them. If so, this includes also all buffered
// refinement bits that are part of the EOB pattern.
if (skip)
CodeBlockSkip(ac,skip);
//
// Run groups. These are complete groups of runs of 16 or more
// zeros uninterrupted by refinement bits. First the runs are
// encoded, and then the correction bits that belong to the
// corresponding group. The last (current) group belongs
// to the current run, but that is only coded with ZRL as
// long as it is a run longer than 16. The rest goes then
// into the combined symbol/run code that codes the
// coefficient that just became significant. If any significant
// coefficients became refined during the last run-group,
// they are coded as part of the >15 run, and not as part
// of the symbol - which is exactly what G-7 says about this.
//
// First flush out data that would have been flushed before
// in previous groups.
while(g < group) {
ac->Put(&m_Stream,0xf0); // ZRL, 16-run.
// All correction bits that belong to the current group.
while(b < br && (((*b^g) & (~0x01)) == 0)) {
m_Stream.Put<1>(*b++);
}
// A full group, equivalent to a full run of 16.
g += 2;
}
// Now to the final group we are currently part of. This is
// part of the "regular" coding and follows again precisely
// flowchart G-7.
assert(g == group);
//
// Now all remaining ZRL-runs. These should be all in the current
// and final group. Note that these bits go into the run, and not
// into the final residual run that is combined with the symbol.
while(run > 15) {
ac->Put(&m_Stream,0xf0); // ZRL, 16-run.
while(b < br) {
assert(((*b^g) & (~0x01)) == 0);
m_Stream.Put<1>(*b++);
}
run -= 16;
}
// Now we have a non-zero coefficient that just became non-zero.
// Since we're coding bitplanes, the coefficient can now only be +1 or -1.
// Since we store the magnitude, it is +1.
ac->Put(&m_Stream,1 | (run << 4));
// Store the sign of the coefficient. Zero for negative.
m_Stream.Put<1>((data >= 0)?1:0);
// And send the last refinement bits ("correction bits") that are
// part of the run in front of the coefficient. If there are any.
// If the last run was longer than 16, there aren't.
while(b < br) {
assert(((*b^g) & (~0x01)) == 0);
m_Stream.Put<1>(*b++);
}
//
// All correction bits coded, run is over.
br = refinement;
group = 0;
run = 0;
}
}
} while(++k <= m_ucScanStop);
//
// Check whether any coefficients where skipped at the end of the block.
// This happens either if run > 0, i.e. insignificant coefficients were
// skipped, or if there is something in the buffer, i.e. significant
// coefficients were skipped.
if (run || br > refinement) {
// If this is part of the (isolated) AC scan of the progressive JPEG,
// check whether we could potentially accumulate this into a run of
// zero blocks.
skip++;
// Append to the buffered bits. Which group the correction bits belong
// to does here not matter anymore as they become all part of the EOB
// coding and are then handled by the next block, or at the end of the
// scan.
m_ACBuffer.Write(refinement,br - refinement);
if (skip == MAX_WORD) {
// avoid an overflow, code now.
CodeBlockSkip(ac,skip);
}
}
}
}
///
/// RefinementScan::DecodeBlock
// Decode a single huffman block.
void RefinementScan::DecodeBlock(LONG *block,
class HuffmanDecoder *ac,
UWORD &skip)
{
if (m_ucScanStart == 0 && m_bResidual == false) {
UBYTE correction = m_Stream.Get<1>();
// Simply append the bits from the scan, no further coding.
block[0] |= correction << m_ucLowBit;
}
if (m_ucScanStop || m_bResidual) {
int k = m_ucScanStart;
UBYTE run = 0;
LONG s = 0; // significance available? Positive? Negative?
//
assert(m_ucScanStart || m_bResidual); // AC coding must be separate from DC coding.
//
if (skip > 0) {
// The entire block is skipped, decode only the refinement bits.
run = m_ucScanStop - m_ucScanStart + 1;
skip--; // Still blocks to skip
} else {
k--;
goto start; // Not elegant, but efficient.
}
//
do {
LONG data;
// Skip coefficients, but for those that were significant,
// collect refinement bits which we know are available because
// we are currently parsing off the trailer of either an EOB
// or of a EOBx.
if ((data = block[DCT::ScanOrder[k]])) {
UBYTE correction = m_Stream.Get<1>();
if (correction) {
// Correction necessary. The direction depends on the
// sign. We always correct "away from the origin".
if (data > 0) {
block[DCT::ScanOrder[k]] += 1L << m_ucLowBit;
} else {
block[DCT::ScanOrder[k]] -= 1L << m_ucLowBit;
}
}
} else if (run) {
// Still in the run.
run--;
} else {
// Run ended, decode the coefficient that ends the run. If
// we have a significant coefficient, decode it here. This
// also covers the case of the last element of a ZRL run.
// Then s is simply zero.
block[DCT::ScanOrder[k]] = s << m_ucLowBit;
//
// If this is the last coefficient, then there is nothing more to do
// on this block.
if (k == m_ucScanStop)
break;
//
// Get the next run/amplitude pair. This can be either an EOBx symbol
// for skipping this and the next x blocks, or a run16 symbol to skip
// the next 16 blocks without any amplitude, or a true run/amplitude
// pair.
start:
UBYTE r,rs;
rs = ac->Get(&m_Stream);
r = rs >> 4;
s = rs & 0x0f;
if (s == 0) {
// This is a pure skip without an amplitude pair.
if (r == 15) {
run = r; // No typo, the 16th coefficient is s = 0.
} else {
// A progressive EOB run.
skip = 1 << r;
if (r) skip |= m_Stream.Get(r);
skip--; // this block is included in the count.
run = m_ucScanStop - k + 1; // Skip the rest of the block,
// though not for the refinement bits.
}
} else {
UBYTE sign;
// A run/amplitude pair. Only +/-1 amplitudes may appear here.
if (s != 1) {
JPG_WARN(MALFORMED_STREAM,"RefinementScan::DecodeBlock",
"unexpected Huffman symbol in refinement coding, "
"must be a +/-1 amplitude");
// Ok, to recover, do not refine here at all, we are out of sync
// anyhow. Rather, leave the modification as local as possible
// and decode as fast as possible so decoding will stop at the
// next restart marker.
run = 0;
s = 0;
} else {
//
sign = m_Stream.Get<1>();
// Get the sign of the coefficient. Zero is for negative.
if (sign == 0)
s = -s;
// Note that we cannot apply the bits itself now. Must skip the coefficients
// handled here.
run = r;
}
}
}
} while(++k <= m_ucScanStop);
}
}
///
/// RefinementScan::WriteFrameType
// Write the marker that indicates the frame type fitting to this scan.
void RefinementScan::WriteFrameType(class ByteStream *io)
{
// is progressive.
if (m_bResidual) {
io->PutWord(0xffb2);
} else {
io->PutWord(0xffc2);
}
}
///
/// RefinementScan::OptimizeBlock
// Make an R/D optimization for the given scan by potentially pushing
// coefficients into other bins.
#if ACCUSOFT_CODE
void RefinementScan::OptimizeBlock(LONG,LONG,UBYTE component,double critical,
class DCT *dct,LONG quantized[64])
#else
void RefinementScan::OptimizeBlock(LONG,LONG,UBYTE,double,class DCT *,LONG [64])
#endif
{
#if ACCUSOFT_CODE
class HuffmanCoder *ac = (m_ucScanStop)?m_pScan->ACHuffmanCoderOf(component):NULL;
const LONG *transformed = dct->TransformedBlockOf();
const LONG *delta = dct->BucketSizes();
double zdistbuf[64 + 1]; // the element at zero is zero to keep the code simple.
double jfuncbuf[64 + 1]; // ditto.
UBYTE refinebuf[64 + 1]; // ditto.
double *zdist = zdistbuf + 1; // cumulative distortion for coefficients "runned over"
double *jfunc = jfuncbuf + 1; // the cumulative J functional along the run
UBYTE *refine = refinebuf + 1; // cumulative bits spend for refinement coding
LONG zero[64]; // value of a zero'd coefficient.
int start[64]; // start of runs.
int coded[64];
const LONG thres = (1L << m_ucLowBit) - 1;
int eobpos = 0; // position of the EOB
int k; // position in the scan.
int ss = m_ucScanStart;
//
// Start of the scan. Do not include the DC coefficient if we have one.
if (ss == 0 && !m_bResidual)
ss = 1;
//
// Only consider AC coefficients. DC coefficients would require cross-block optimizations
// and are hence harder to do.
// Start of the trellis: Initialize the cumulative functionals to zero.
zdist [ss - 1] = 0.0;
jfunc [ss - 1] = 0.0;
refine[ss - 1] = 0;
for(k = ss;k <= m_ucScanStop;k++) {
int j = DCT::ScanOrder[k];
LONG quant = quantized[j];
double weight = 8.0 / delta[j];
double error;
LONG prev; // Data in the previous scan, might be zero or non-zero
LONG data; // data to be coded in this scan.
// Implement the point transformation. This is here a division, not
// a shift (rounding is different for negative numbers).
prev = (quant >= 0)?(quant >> m_ucHighBit):(-((-quant) >> m_ucHighBit));
data = (quant >= 0)?(quant >> m_ucLowBit ):(-((-quant) >> m_ucLowBit ));
coded[j] = data;
jfunc[k] = HUGE_VAL;
// In the optimization, only cover bits that we may encode in this
// run and we could delay to the next. Refined coefficients cannot
// improve the rate or rate-distortion since they do not undergo
// any coding.
if (prev) {
// Coefficient was coded before and is refined here. Update the
// distortion for including it in a run in front of a non-zero
// coefficient. Refinement coding is really nothing we should
// change since there is no rate advantage anyhow, it remains
// coding of one bit.
error = (quant * delta[j] - transformed[j]) * weight;
zdist[k] = error * error * critical + zdist[k - 1];
refine[k] = 1 + refine[k - 1];
} else {
// Additional error due to including this coefficient in a run by
// setting it to zero.
if (quant < -thres) {
zero[k] = -thres; // lowest possible value.
} else if (quant > thres) {
zero[k] = thres;
} else {
zero[k] = quant; // is already consistent with the value.
}
error = (zero[k] * delta[j] - transformed[j]) * weight;
zdist[k] = error * error * critical + zdist[k - 1];
refine[k] = refine[k - 1];
// Only care about coefficients that are non-zero since those we
// can push into the zero.
if (data) {
double dist;
// Compute the candidates. Since we only code a single bit here,
// we can either include it in the run or not. There is not much
// other choice to make. Compute the distortion contribution by
// encoding the coefficient "as is" without including it in the
// run.
error = (quant * delta[j] - transformed[j]) * weight;
dist = error * error * critical;
// The only choice is now to include this coefficient in a run and
// hence set it to zero, or not. This decision is made by the
// next later coefficient.
// Now compute the cost for encoding the run in front of this coefficient.
for (int l = ss - 1;l < k;l++) {
// Accumulate j for starting the run at l (actually, l+1 is the first
// coefficient that is part of the run, the coefficient at l is non-zero
// or the DC coefficient).
if (l == ss - 1 || coded[DCT::ScanOrder[l]]) {
int run = k - 1 - l; // Length of the run in front of me.
int runrate = 0,rate;
double jf; // new candidate of the J functional.
// Non-zero coefficient. This is now a potential "push-l-into-zero" case which might
// create a new run of the size above.
// For that, compute now the cost of the run.
// First, to encode the runs larger than 16 (if we can).
// This includes also the rate for the coefficients refined in front of us
// which are encoded each by a single bit. Fortunately, the order in which
// we add up coefficients does not matter here, so we can simply include this
// later in the rate and just compute the overhead for the run-16 markers now.
if ((run >> 4)) {
int runrate = ac->isDefined(0xf0);
if (runrate == 0)
continue; // This is not an option if the Huffman code does not define this
runrate = (run >> 4) * runrate;
}
run &= 0x0f;
// The symbol to code is now (run << 4) | 1. Compute the rate contribution of that.
rate = ac->isDefined((run << 4) | 1);
if (rate == 0)
continue; // Not an option if not in the alphabet.
// The total rate is now given by the rate of the cofficient itself (one bit)
// plus the refinement codes of the coefficients ahead, plus the size of
// the run code, plus the refinement codes in the run-groups before.
// The distortion part includes the distortion from above, plus the
// distortion of the coefficients we pushed to zero, plus the distortion
// of the refined coefficients (which are conveniently included in zdist as well)
// Finally, include the cost up to l here to get the total J up to coefficient k.
jf = dist + zdist[k - 1] - zdist[l] +
runrate + rate + 1 + refine[k - 1] - refine[l] + jfunc[l];
//
// If this lowers the functional, use this as candidate.
if (jf < jfunc[k]) {
jfunc[k] = jf;
start[k] = l;
}
}
}
// The ideal start point for the run has been found.
// There is no need to modify the new quantized value of the coefficient
// since there is not really a choice. Either it is included in the run
// or it is not.
}
}
}
//
// Run starts found. Now try to find the EOB. Actually, one could run an EOB-
// optimization here in case all coefficients are zero as the run is then
// relocated into one of the next blocks as a run-of-blocks.
// Note that there may be refined coefficients in front of the EOB that
// need to be coded. Note that the EOB itself is not coded, though, but is
// part of a block skip. For simplicity, assume here that we do not use
// zero-runs of blocks.
if (m_ucScanStop) {
if (ac->isDefined(0x00)) {
double jeob = zdist[m_ucScanStop] + ac->Length(0x00) + refine[m_ucScanStop];
// joeb is the value of the j functional for coding the entire block as zero,
// i.e. coding the eob directly at the first AC coefficient. This includes
// the cost for the refinement coding of all coefficients between.
for(k = ss;k <= m_ucScanStop;k++) {
if (coded[DCT::ScanOrder[k]]) {
// Include in the functional the cost for placing the EOB right behind
// this block and zero-ing out the rest of the block.
double jf = jfunc[k] + zdist[m_ucScanStop] - zdist[k] + refine[m_ucScanStop] - refine[k];
// If this is not the end of the block, include the rate of the EOB.
if (k < m_ucScanStop)
jf += ac->isDefined(0x00);
// If the functional gets lower by terminating the block at position k, remember this
// choice.
if (jf < jeob) {
jeob = jf;
eobpos = k;
}
}
}
} else {
// No EOB in the alphabet. Yuck. Ok, so stop at 63.
eobpos = m_ucScanStop;
}
//
// Done. Zero-out the coefficients in the runs and behind the EOB, or rather, push
// them into the deadzone.
for(k = m_ucScanStop;k >= ss;k--) {
if (k > eobpos) { // Is behind a run?
// Potentially zero-out the coefficient, unless it is a refined coefficient
// which we should not touch. Changing them does not change the rate at all
// and can only lower the distortion, so do not bother.
if (refine[k] == refine[k-1])
quantized[DCT::ScanOrder[k]] = zero[k]; // zero out the coefficient.
} else {
// Otherwise, find the start of the run that ends at this coefficient,
// and continue to clean out up to this position.
eobpos = start[k];
}
}
}
#else
JPG_THROW(NOT_IMPLEMENTED,"RefinementScan::OptimizeBlock",
"soft-threshold quantizer not implemented in this code version");
#endif
}
///
/// RefinementScan::OptimizeDC
// Make an R/D optimization of the DC scan. This includes all DC blocks in
// total, not just a single block. This is because the coefficients are not
// coded independently.
void RefinementScan::OptimizeDC(void)
{
// There is really nothing to optimize here as the bitrate is constant, no
// matter what the data actually is.
}
///
/// RefinementScan::StartOptimizeScan
// Start making an optimization run to adjust the coefficients.
void RefinementScan::StartOptimizeScan(class BufferCtrl *)
{
// Ditto.
}
///
|