1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
|
/*************************************************************************
This project implements a complete(!) JPEG (Recommendation ITU-T
T.81 | ISO/IEC 10918-1) codec, plus a library that can be used to
encode and decode JPEG streams.
It also implements ISO/IEC 18477 aka JPEG XT which is an extension
towards intermediate, high-dynamic-range lossy and lossless coding
of JPEG. In specific, it supports ISO/IEC 18477-3/-6/-7/-8 encoding.
Note that only Profiles C and D of ISO/IEC 18477-7 are supported
here. Check the JPEG XT reference software for a full implementation
of ISO/IEC 18477-7.
Copyright (C) 2012-2018 Thomas Richter, University of Stuttgart and
Accusoft. (C) 2019-2020 Thomas Richter, Fraunhofer IIS.
This program is available under two licenses, GPLv3 and the ITU
Software licence Annex A Option 2, RAND conditions.
For the full text of the GPU license option, see README.license.gpl.
For the full text of the ITU license option, see README.license.itu.
You may freely select between these two options.
For the GPL option, please note the following:
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*************************************************************************/
/*
**
** A sequential scan, also the first scan of a progressive scan,
** Huffman coded.
**
** $Id: sequentialscan.cpp,v 1.94 2023/02/21 10:17:41 thor Exp $
**
*/
/// Includes
#include "codestream/sequentialscan.hpp"
#include "codestream/tables.hpp"
#include "marker/frame.hpp"
#include "marker/component.hpp"
#include "coding/huffmantemplate.hpp"
#include "coding/huffmancoder.hpp"
#include "coding/huffmandecoder.hpp"
#include "coding/huffmanstatistics.hpp"
#include "coding/quantizedrow.hpp"
#include "codestream/rectanglerequest.hpp"
#include "dct/dct.hpp"
#include "std/assert.hpp"
#include "interface/bitmaphook.hpp"
#include "interface/imagebitmap.hpp"
#include "colortrafo/colortrafo.hpp"
#include "tools/traits.hpp"
#include "control/blockbuffer.hpp"
#include "control/blockbitmaprequester.hpp"
#include "control/blocklineadapter.hpp"
///
/// SequentialScan::SequentialScan
SequentialScan::SequentialScan(class Frame *frame,class Scan *scan,
UBYTE start,UBYTE stop,UBYTE lowbit,UBYTE,
bool differential,bool residual,bool large,bool baseline)
: EntropyParser(frame,scan), m_pBlockCtrl(NULL),
m_ucScanStart(start), m_ucScanStop(stop), m_ucLowBit(lowbit),
m_bDifferential(differential), m_bResidual(residual), m_bLargeRange(large), m_bBaseline(baseline)
{
UBYTE hidden = m_pFrame->TablesOf()->HiddenDCTBitsOf();
m_ucCount = scan->ComponentsInScan();
if (m_ucScanStart > 0 || m_ucScanStop < 63 || m_ucLowBit > hidden)
m_bProgressive = true;
else
m_bProgressive = false;
for(int i = 0;i < 4;i++) {
m_pDCDecoder[i] = NULL;
m_pACDecoder[i] = NULL;
m_pDCCoder[i] = NULL;
m_pACCoder[i] = NULL;
m_pDCStatistics[i] = NULL;
m_pACStatistics[i] = NULL;
m_plDCBuffer[i] = NULL;
}
}
///
/// SequentialScan::~SequentialScan
SequentialScan::~SequentialScan(void)
{
for(int i = 0;i < 4;i++) {
if (m_plDCBuffer[i])
m_pEnviron->FreeMem(m_plDCBuffer[i],sizeof(LONG) * m_ulBlockWidth[i] * m_ulBlockHeight[i]);
}
}
///
/// SequentialScan::StartParseScan
void SequentialScan::StartParseScan(class ByteStream *io,class Checksum *chk,class BufferCtrl *ctrl)
{
int i;
for(i = 0;i < m_ucCount;i++) {
if (m_ucScanStart == 0) {
m_pDCDecoder[i] = m_pScan->DCHuffmanDecoderOf(i);
if (m_pDCDecoder[i] == NULL)
JPG_THROW(MALFORMED_STREAM,"SequentialScan::StartParseScan",
"Huffman decoder not specified for all components included in scan");
} else {
m_pDCDecoder[i] = NULL; // not required, is AC only.
}
if (m_ucScanStop) {
m_pACDecoder[i] = m_pScan->ACHuffmanDecoderOf(i);
if (m_pACDecoder[i] == NULL)
JPG_THROW(MALFORMED_STREAM,"SequentialScan::StartParseScan",
"Huffman decoder not specified for all components included in scan");
} else {
m_pACDecoder[i] = NULL; // not required, is DC only.
}
m_lDC[i] = 0;
m_ulX[i] = 0;
m_usSkip[i] = 0;
}
assert(!ctrl->isLineBased());
m_pBlockCtrl = dynamic_cast<BlockCtrl *>(ctrl);
m_pBlockCtrl->ResetToStartOfScan(m_pScan);
m_Stream.OpenForRead(io,chk);
}
///
/// SequentialScan::StartWriteScan
void SequentialScan::StartWriteScan(class ByteStream *io,class Checksum *chk,class BufferCtrl *ctrl)
{
int i;
for(i = 0;i < m_ucCount;i++) {
if (m_bResidual == false && m_ucScanStart == 0) {
m_pDCCoder[i] = m_pScan->DCHuffmanCoderOf(i);
} else {
m_pDCCoder[i] = NULL;
}
if (m_ucScanStop) {
m_pACCoder[i] = m_pScan->ACHuffmanCoderOf(i);
} else {
m_pACCoder[i] = NULL;
}
m_pDCStatistics[i] = NULL;
m_pACStatistics[i] = NULL;
m_lDC[i] = 0;
m_ulX[i] = 0;
m_usSkip[i] = 0;
}
m_bMeasure = false;
assert(!ctrl->isLineBased());
m_pBlockCtrl = dynamic_cast<BlockCtrl *>(ctrl);
m_pBlockCtrl->ResetToStartOfScan(m_pScan);
EntropyParser::StartWriteScan(io,chk,ctrl);
m_pScan->WriteMarker(io);
m_Stream.OpenForWrite(io,chk);
}
///
/// SequentialScan::StartMeasureScan
// Measure scan statistics.
void SequentialScan::StartMeasureScan(class BufferCtrl *ctrl)
{
int i;
for(i = 0;i < m_ucCount;i++) {
m_pDCCoder[i] = NULL;
m_pACCoder[i] = NULL;
if (m_bResidual == false && m_ucScanStart == 0) {
m_pDCStatistics[i] = m_pScan->DCHuffmanStatisticsOf(i);
} else {
m_pDCStatistics[i] = NULL;
}
if (m_ucScanStop) {
m_pACStatistics[i] = m_pScan->ACHuffmanStatisticsOf(i);
} else {
m_pACStatistics[i] = NULL;
}
m_lDC[i] = 0;
m_ulX[i] = 0;
m_usSkip[i] = 0;
}
m_bMeasure = true;
assert(!ctrl->isLineBased());
m_pBlockCtrl = dynamic_cast<BlockCtrl *>(ctrl);
m_pBlockCtrl->ResetToStartOfScan(m_pScan);
EntropyParser::StartWriteScan(NULL,NULL,ctrl);
m_Stream.OpenForWrite(NULL,NULL);
}
///
/// SequentialScan::StartOptimizeScan
// Start making an optimization run to adjust the coefficients.
void SequentialScan::StartOptimizeScan(class BufferCtrl *ctrl)
{
int i;
for(i = 0;i < m_ucCount;i++) {
if (m_bResidual == false && m_ucScanStart == 0) {
m_pDCCoder[i] = m_pScan->DCHuffmanCoderOf(i);
} else {
m_pDCCoder[i] = NULL;
}
if (m_ucScanStop) {
m_pACCoder[i] = m_pScan->ACHuffmanCoderOf(i);
} else {
m_pACCoder[i] = NULL;
}
m_pDCStatistics[i] = NULL;
m_pACStatistics[i] = NULL;
m_lDC[i] = 0;
m_ulX[i] = 0;
m_usSkip[i] = 0;
}
assert(!ctrl->isLineBased());
m_pBlockCtrl = dynamic_cast<BlockCtrl *>(ctrl);
m_pBlockCtrl->ResetToStartOfScan(m_pScan);
EntropyParser::StartWriteScan(NULL,NULL,ctrl);
m_Stream.OpenForWrite(NULL,NULL);
}
///
/// SequentialScan::StartMCURow
// Start a MCU scan. Returns true if there are more rows.
bool SequentialScan::StartMCURow(void)
{
bool more = m_pBlockCtrl->StartMCUQuantizerRow(m_pScan);
for(int i = 0;i < m_ucCount;i++) {
m_ulX[i] = 0;
}
return more;
}
///
/// SequentialScan::Restart
// Restart the parser at the next restart interval
void SequentialScan::Restart(void)
{
for(int i = 0; i < m_ucCount;i++) {
m_lDC[i] = 0;
m_usSkip[i] = 0;
}
m_Stream.OpenForRead(m_Stream.ByteStreamOf(),m_Stream.ChecksumOf());
}
///
/// SequentialScan::Flush
// Flush the remaining bits out to the stream on writing.
void SequentialScan::Flush(bool)
{
if (m_ucScanStop && m_bProgressive) {
// Progressive, AC band. It looks weird to code the remaining
// block skips right here. However, AC bands in spectral selection
// are always coded in isolated scans, thus only one component
// per scan and no interleaving. Hence, no problem.
assert(m_ucCount == 1);
if (m_usSkip[0]) {
// Flush out any pending block
if (m_pACStatistics[0]) { // only count.
UBYTE symbol = 0;
while(m_usSkip[0] >= (1L << symbol))
symbol++;
m_pACStatistics[0]->Put((symbol - 1) << 4);
m_usSkip[0] = 0;
} else {
CodeBlockSkip(m_pACCoder[0],m_usSkip[0]);
}
}
}
if (!m_bMeasure)
m_Stream.Flush();
for(int i = 0; i < m_ucCount;i++) {
m_lDC[i] = 0;
m_usSkip[i] = 0;
}
}
///
/// SequentialScan::WriteMCU
// Write a single MCU in this scan. Return true if there are more blocks in this row.
bool SequentialScan::WriteMCU(void)
{
bool more = true;
int c;
assert(m_pBlockCtrl);
BeginWriteMCU(m_Stream.ByteStreamOf());
for(c = 0;c < m_ucCount;c++) {
class Component *comp = m_pComponent[c];
class QuantizedRow *q = m_pBlockCtrl->CurrentQuantizedRow(comp->IndexOf());
class HuffmanCoder *dc = m_pDCCoder[c];
class HuffmanCoder *ac = m_pACCoder[c];
class HuffmanStatistics *dcstat = m_pDCStatistics[c];
class HuffmanStatistics *acstat = m_pACStatistics[c];
LONG &prevdc = m_lDC[c];
UWORD &skip = m_usSkip[c];
UBYTE mcux = (m_ucCount > 1)?(comp->MCUWidthOf() ):(1);
UBYTE mcuy = (m_ucCount > 1)?(comp->MCUHeightOf()):(1);
ULONG xmin = m_ulX[c];
ULONG xmax = xmin + mcux;
ULONG x,y;
if (xmax >= q->WidthOf()) {
more = false;
}
for(y = 0;y < mcuy;y++) {
for(x = xmin;x < xmax;x++) {
LONG *block,dummy[64];
if (q && x < q->WidthOf()) {
block = q->BlockAt(x)->m_Data;
} else {
block = dummy;
memset(dummy ,0,sizeof(dummy) );
block[0] = prevdc;
}
#if HIERARCHICAL_HACK
// A nice hack for the hierarchical scan: If this is not the last frame
// in the hierarchy, remove all coefficients below the diagonal to allow a
// fast "EOB", they can be encoded by the level above.
if (m_pFrame->NextOf()) {
LONG i,j;
for(j = 0;j < 8;j++) {
for(i = 0;i < 8;i++) {
if (i+j > 4) {
block[i + (j << 3)] = 0;
}
}
}
}
#endif
if (m_bMeasure) {
MeasureBlock(block,dcstat,acstat,prevdc,skip);
} else {
EncodeBlock(block,dc,ac,prevdc,skip);
}
}
if (q) q = q->NextOf();
}
// Done with this component, advance the block.
m_ulX[c] = xmax;
}
return more;
}
///
/// SequentialScan::ParseMCU
// Parse a single MCU in this scan. Return true if there are more blocks in this row.
bool SequentialScan::ParseMCU(void)
{
bool more = true;
int c;
assert(m_pBlockCtrl);
bool valid = BeginReadMCU(m_Stream.ByteStreamOf());
for(c = 0;c < m_ucCount;c++) {
class Component *comp = m_pComponent[c];
class QuantizedRow *q = m_pBlockCtrl->CurrentQuantizedRow(comp->IndexOf());
class HuffmanDecoder *dc = m_pDCDecoder[c];
class HuffmanDecoder *ac = m_pACDecoder[c];
UWORD &skip = m_usSkip[c];
LONG &prevdc = m_lDC[c];
UBYTE mcux = (m_ucCount > 1)?(comp->MCUWidthOf() ):(1);
UBYTE mcuy = (m_ucCount > 1)?(comp->MCUHeightOf()):(1);
ULONG xmin = m_ulX[c];
ULONG xmax = xmin + mcux;
ULONG x,y;
if (xmax >= q->WidthOf()) {
more = false;
}
for(y = 0;y < mcuy;y++) {
for(x = xmin;x < xmax;x++) {
LONG *block,dummy[64];
if (q && x < q->WidthOf()) {
block = q->BlockAt(x)->m_Data;
} else {
block = dummy;
}
if (valid) {
DecodeBlock(block,dc,ac,prevdc,skip);
} else {
for(UBYTE i = m_ucScanStart;i <= m_ucScanStop;i++) {
block[i] = 0;
}
}
}
if (q) q = q->NextOf();
}
// Done with this component, advance the block.
m_ulX[c] = xmax;
}
return more;
}
///
/// SequentialScan::MeasureBlock
// Make a block statistics measurement on the source data.
void SequentialScan::MeasureBlock(const LONG *block,
class HuffmanStatistics *dc,class HuffmanStatistics *ac,
LONG &prevdc,UWORD &skip)
{
// DC coding
if (m_ucScanStart == 0 && m_bResidual == false) {
LONG diff;
UBYTE symbol = 0;
// DPCM coding of the DC coefficient.
diff = block[0] >> m_ucLowBit; // Actually, only correct for two's complement machines...
diff -= prevdc;
if (m_bDifferential) {
prevdc = 0;
} else {
prevdc = block[0] >> m_ucLowBit;
}
if (diff) {
do {
symbol++;
if (diff > -(1L << symbol) && diff < (1L << symbol)) {
dc->Put(symbol);
break;
}
} while(true);
} else {
dc->Put(0);
}
}
// AC coding
if (m_ucScanStop) {
UBYTE symbol,run = 0;
int k = (m_ucScanStart)?(m_ucScanStart):((m_bResidual)?0:1);
do {
LONG data = block[DCT::ScanOrder[k]];
// Implement the point transformation. This is here a division, not
// a shift (rounding is different for negative numbers).
data = (data >= 0)?(data >> m_ucLowBit):(-((-data) >> m_ucLowBit));
if (data == 0) {
run++;
} else {
// Code (or compute the length of) any missing zero run.
if (skip) {
UBYTE sksymbol = 0;
while(skip >= (1L << sksymbol))
sksymbol++;
ac->Put((sksymbol - 1) << 4);
skip = 0;
}
// First ensure that the run is at most 15, the largest cathegory.
while(run > 15) {
ac->Put(0xf0); // r = 15 and s = 0
run -= 16;
}
if (data == -0x8000 && !m_bProgressive && m_bResidual) {
ac->Put(0x10);
} else {
symbol = 0;
do {
symbol++;
if (symbol >= (m_bLargeRange?22:16))
JPG_THROW(OVERFLOW_PARAMETER,"SequentialScan::MeasureBlock",
"Symbol is too large to be encoded in scan, enable refinement coding to avoid the problem");
if (data > -(1L << symbol) && data < (1L << symbol)) {
// Cathegory symbol, run length run
if (symbol >= 16) {
// This is the large-range DCT coding required for part 8 if the DCT
// remains enabled.
// This map converts symbol=16 into 16, symbol=17 into 32 and so on.
ac->Put((symbol - 15) << 4);
} else {
ac->Put(symbol | (run << 4));
}
break;
}
} while(true);
//
// Run is over.
run = 0;
}
}
} while(++k <= m_ucScanStop);
//
// Is there still an open run? If so, code an EOB.
if (run) {
// In the progressive mode, absorb into the skip
if (m_bProgressive) {
skip++;
if (skip == MAX_WORD) {
ac->Put(0xe0); // symbol for maximum length
skip = 0;
}
} else {
ac->Put(0x00);
}
}
}
}
///
/// SequentialScan::CodeBlockSkip
// Code any run of zero blocks here. This is only valid in
// the progressive mode.
void SequentialScan::CodeBlockSkip(class HuffmanCoder *ac,UWORD &skip)
{
if (skip) {
UBYTE symbol = 0;
do {
symbol++;
if (skip < (1L << symbol)) {
symbol--;
assert(symbol <= 14);
ac->Put(&m_Stream,symbol << 4);
if (symbol)
m_Stream.Put(symbol,skip);
skip = 0;
return;
}
} while(true);
}
}
///
/// SequentialScan::EncodeBlock
// Encode a single huffman block
void SequentialScan::EncodeBlock(const LONG *block,
class HuffmanCoder *dc,class HuffmanCoder *ac,
LONG &prevdc,UWORD &skip)
{
// DC coding
if (m_ucScanStart == 0 && m_bResidual == false) {
UBYTE symbol = 0;
LONG diff;
//
// DPCM coding of the DC coefficient.
diff = block[0] >> m_ucLowBit; // Actually, only correct for two's complement machines...
diff -= prevdc;
if (m_bDifferential) {
prevdc = 0;
} else {
prevdc = block[0] >> m_ucLowBit;
}
if (diff) {
do {
symbol++;
if (diff > -(1L << symbol) && diff < (1L << symbol)) {
dc->Put(&m_Stream,symbol);
if (diff >= 0) {
m_Stream.Put(symbol,diff);
} else {
m_Stream.Put(symbol,diff - 1);
}
break;
}
} while(true);
} else {
dc->Put(&m_Stream,0);
}
}
// AC coding
if (m_ucScanStop) {
UBYTE symbol,run = 0;
int k = (m_ucScanStart)?(m_ucScanStart):((m_bResidual)?0:1);
do {
LONG data = block[DCT::ScanOrder[k]];
// Implement the point transformation. This is here a division, not
// a shift (rounding is different for negative numbers).
data = (data >= 0)?(data >> m_ucLowBit):(-((-data) >> m_ucLowBit));
if (data == 0) {
run++;
} else {
// Are there any skipped blocks we still need to code? Since this
// block is none of them.
if (skip)
CodeBlockSkip(ac,skip);
//
// First ensure that the run is at most 15, the largest cathegory.
while(run > 15) {
ac->Put(&m_Stream,0xf0); // r = 15 and s = 0
run -= 16;
}
// This is a special case that can only happen in sequential mode, namely coding of the -0x8000
// symbol.
if (data == -0x8000 && !m_bProgressive && m_bResidual) {
ac->Put(&m_Stream,0x10);
m_Stream.Put(4,run);
} else {
symbol = 0;
do {
symbol++;
if (symbol >= (m_bLargeRange?22:16))
JPG_THROW(OVERFLOW_PARAMETER,"SequentialScan::EncodeBlock",
"Symbol is too large to be encoded in scan, enable refinement coding to avoid the problem");
//
if (data > -(1L << symbol) && data < (1L << symbol)) {
// Cathegory symbol, run length run
// If this is above the limit 16, use the huge DCT model. Note that the above
// error already excluded the regular case.
if (symbol >= 16) {
// This map converts symbol=16 into 16, symbol=17 into 32 and so on.
ac->Put(&m_Stream,((symbol - 15) << 4));
m_Stream.Put(4,run);
} else {
ac->Put(&m_Stream,symbol | (run << 4));
}
if (data >= 0) {
m_Stream.Put(symbol,data);
} else {
m_Stream.Put(symbol,data - 1);
}
break;
}
} while(true);
//
// Run is over.
run = 0;
}
}
} while(++k <= m_ucScanStop);
// Is there still an open run? If so, code an EOB in the regular mode.
// If this is part of the (isolated) AC scan of the progressive JPEG,
// check whether we could potentially accumulate this into a run of
// zero blocks.
if (run) {
// Include in a block skip (or try to, rather).
if (m_bProgressive) {
skip++;
if (skip == MAX_WORD) // avoid an overflow, code now
CodeBlockSkip(ac,skip);
} else {
// In sequential mode, encode as EOB.
ac->Put(&m_Stream,0x00);
}
}
}
}
///
/// SequentialScan::DecodeBlock
// Decode a single huffman block.
void SequentialScan::DecodeBlock(LONG *block,
class HuffmanDecoder *dc,class HuffmanDecoder *ac,
LONG &prevdc,UWORD &skip)
{
if (m_ucScanStart == 0 && m_bResidual == false) {
// First DC level coding. If it is in the spectral selection.
LONG diff = 0;
UBYTE value = dc->Get(&m_Stream);
if (value > 0) {
LONG v = 1 << (value - 1);
if (value > 15)
JPG_THROW(MALFORMED_STREAM,"SequentialScan::DecodeBlock",
"DC coefficient decoding out of sync");
diff = m_Stream.Get(value);
if (diff < v) {
diff += (-1L << value) + 1;
}
}
if (m_bDifferential) {
prevdc = diff;
} else {
prevdc += diff;
}
block[0] = prevdc << m_ucLowBit; // point transformation
}
if (m_ucScanStop) {
// AC coding.
if (skip > 0) {
skip--; // Still blocks to skip
} else {
int k = (m_ucScanStart)?(m_ucScanStart):((m_bResidual)?0:1);
do {
UBYTE rs = ac->Get(&m_Stream);
UBYTE r = rs >> 4;
UBYTE s = rs & 0x0f;
if (s == 0) {
if (r == 15) {
k += 16;
continue;
} else {
// A progressive EOB run.
if (r == 0 || m_bProgressive) {
skip = 1 << r;
if (r) skip |= m_Stream.Get(r);
skip--; // this block is included in the count.
break;
} else if (m_bResidual && rs == 0x10) {
// The symbol 0x8000
r = m_Stream.Get(4); // 4 bits for the run.
k += r;
if (k >= 64)
JPG_THROW(MALFORMED_STREAM,"SequentialScan::DecodeBlock",
"AC coefficient decoding out of sync");
block[DCT::ScanOrder[k]] = -0x8000 << m_ucLowBit; // Point transformation.
k++;
continue; //...with the iteration, skipping over zeros.
} else if (m_bLargeRange) {
// Large range coding coding codes the magnitude category and the run
// separately. First extract the category from the bits that usually
// take up the run.
s = r + 15; // This maps 16 into 16, 32 into 17 and so on.
r = m_Stream.Get(4); // The run is decoded separately, without using Huffman.
// Check whether this is too large. As we have only 16 bit output at most,
// we should get away with most 16 here.
if (s >= 24)
JPG_THROW(NOT_IMPLEMENTED,"SequentialScan::DecodeBlock",
"AC coefficient too large, cannot decode");
// Continues with the regular case.
} else {
JPG_THROW(MALFORMED_STREAM,"SequentialScan::DecodeBlock",
"AC coefficient decoding out of sync");
}
}
}
// Regular code case.
{
LONG diff;
LONG v = 1 << (s - 1);
k += r;
diff = m_Stream.Get(s);
if (diff < v) {
diff += (-1L << s) + 1;
}
if (k >= 64)
JPG_THROW(MALFORMED_STREAM,"SequentialScan::DecodeBlock",
"AC coefficient decoding out of sync");
block[DCT::ScanOrder[k]] = diff << m_ucLowBit; // Point transformation.
k++;
}
} while(k <= m_ucScanStop);
}
}
}
///
/// SequentialScan::WriteFrameType
// Write the marker that indicates the frame type fitting to this scan.
void SequentialScan::WriteFrameType(class ByteStream *io)
{
if (m_bProgressive) {
// any type of progressive.
if (m_bResidual) {
io->PutWord(0xffb2); // residual progressive
} else if (m_bDifferential) {
io->PutWord(0xffc6);
} else {
io->PutWord(0xffc2);
}
} else {
if (m_bResidual) {
io->PutWord(0xffb1); // residual sequential
} else if (m_bDifferential) {
io->PutWord(0xffc5);
} else if (m_bLargeRange) {
io->PutWord(0xffb3);
} else if (m_bBaseline) {
io->PutWord(0xffc0);
} else {
io->PutWord(0xffc1);
}
}
}
///
/// SequentialScan::OptimizeBlock
// Make an R/D optimization for the given scan by potentially pushing
// coefficients into other bins. This runs an optimization for a single
// block and requires external control to run over the blocks.
// component is the component, critical is the critical slope for
// the R/D optimization of the functional J = \lambda D + R, i.e.
// this is lambda.
// Quant are the quantization parameters, i.e. deltas. These are eventually
// preshifted by "preshift".
// transformed are the dct-transformed but unquantized data. These are also pre-
// shifted by "preshift".
// quantized is the quantized data. These are potentially (and likely) adjusted.
#if ACCUSOFT_CODE
void SequentialScan::OptimizeBlock(LONG bx,LONG by,UBYTE component,double critical,
class DCT *dct,LONG quantized[64])
#else
void SequentialScan::OptimizeBlock(LONG,LONG,UBYTE,double,class DCT *,LONG[64])
#endif
{
#if ACCUSOFT_CODE
class HuffmanCoder *ac = (m_ucScanStop)?m_pScan->ACHuffmanCoderOf(component):NULL;
const LONG *transformed = dct->TransformedBlockOf();
const LONG *delta = dct->BucketSizes();
double zdistbuf[64 + 1]; // the element at zero is zero to keep the code simple.
double jfuncbuf[64 + 1]; // ditto.
double *zdist = zdistbuf + 1; // cumulative distortion for pushing coefficients into zero
double *jfunc = jfuncbuf + 1; // the cumulative J functional along the run
LONG zero[64]; // The value of a coefficient if we "push it into zero".
int start[64]; // start of runs.
LONG coded[64];
const LONG thres = (1L << m_ucLowBit) - 1;
int eobpos = 0; // position of the EOB
int k; // position in the scan.
int ss = m_ucScanStart;
//
// Create the DC buffer if we do not yet have it.
if (m_plDCBuffer[component] == NULL) {
class Component *comp = m_pComponent[component];
const ULONG width = m_pFrame->WidthOf();
const ULONG height = m_pFrame->HeightOf();
const UBYTE subx = comp->SubXOf();
const UBYTE suby = comp->SubYOf();
const ULONG blockwidth = (((width + subx - 1) / subx) + 7) >> 3;
const ULONG blockheight = (((height + suby - 1) / suby) + 7) >> 3;
// Allocate now the DC buffer
m_ulBlockWidth[component] = blockwidth;
m_ulBlockHeight[component] = blockheight;
m_plDCBuffer[component] = (LONG *)m_pEnviron->AllocMem(sizeof(LONG) * blockwidth * blockheight);
m_dCritical[component] = critical;
// Keep the DC quantizer value for later optimizer.
m_lDCDelta[component] = delta[0];
}
//
// Keep the DC coefficient for later.
m_plDCBuffer[component][bx + m_ulBlockWidth[component] * by] = transformed[0];
//
// Start of the scan. Do not include the DC coefficient if we have one.
if (ss == 0 && !m_bResidual)
ss = 1;
//
// Only consider AC coefficients. DC coefficients would require cross-block optimizations
// and are hence harder to do.
// Start of the trellis: Initialize the cumulative functionals to zero.
zdist[ss - 1] = 0.0;
jfunc[ss - 1] = 0.0;
for(k = ss;k <= m_ucScanStop;k++) {
int j = DCT::ScanOrder[k];
LONG quant = quantized[j];
LONG data; // the data encoded in the codestream after the point shift.
double weight = 8.0 / delta[j];
int symbol; // the size category of the old symbol, or 0 if the amplitude is +1 or -1
int newsymb; // the second alternative for the symbol if we modify the amplitude.
double error;
//
// Include the point shift in the quantized data for the symbol computation.
// Keep the encoded data for later.
data = (quant >= 0)?(quant >> m_ucLowBit):(-((-quant) >> m_ucLowBit));
coded[j] = data;
//
// Pool up the entire error along the scan. This means that the total
// error for initiating a zero-run can be given by the difference of the zdist
// functional at the end minus the value at the start-1. Note that due to
// the point-shift by low-bits, the coefficient may not be actually
// zero after the adjustment. Compute the largest possible value to make
// the coefficient consistent with the inclusion of the coefficient in the
// zero-bin.
if (quant < -thres) {
zero[k] = -thres; // lowest possible value.
} else if (quant > thres) {
zero[k] = thres;
} else {
zero[k] = quant; // is already consistent with the value.
}
//
// Compute the distortion when setting the coefficient to zero.
// Additional error due to including this coefficient in a run by
// setting it to zero.
error = (zero[k] * delta[j] - transformed[j]) * weight;
zdist[k] = critical * error * error + zdist[k - 1];
//
// This is the cumulative j functional up to the position k, so far. Will be
// optimized during this iteration finding its minimum.
jfunc[k] = HUGE_VAL;
//
// If the quantized version is already zero, there is no need to modify anything.
if (data) {
double distnew,distold;
LONG newquant;
LONG bestquant = quant; // quantized value that goes for the best coefficient decision.
// Compute the new and old distortion for pushing the coefficient into the next lower bin.
// The next higher bin makes no sense (higher rate, usually),
// and anything else is probably too unlikely to worry about.
double errold;
double errnew;
// This coefficient may profit from an amplitude change. Actually, we may
// consider more than one amplitude change, but in reality, it rately makes
// sense to change the amplitude by more than one bucket. Thus, we only keep
// two possibilities here (or actually three, namely set the coefficient to
// zero completely).
// The rate is only reduced if we change the amplitude category by one.
// (or, theoretically, by more).
symbol = 0;
do {
symbol++;
if (data > -(1L << symbol) && data < (1L << symbol)) {
// We got the right category for the symbol.
if (symbol > 1) {
// Ok, there is at least a chance to modify the symbol
// Try to push it into the next lower category while keeping
// it as large as possible. This also modifies the bits
// for subsequent refinement scans.
newquant = (1L << (symbol + m_ucLowBit - 1)) - 1;
newsymb = symbol - 1;
if (quant < 0)
newquant = -newquant;
} else {
// Magnitude category 1 does not really have a choice
// between two options. This can either stay non-zero
// or become part of a run (which is evaluated below).
newquant = quant;
newsymb = symbol;
}
break;
}
} while(true);
//
// Compute the distortion difference as new - old.
errold = (double)(quant * delta[j] - transformed[j]) * weight;
errnew = (double)(newquant * delta[j] - transformed[j]) * weight;
distold = errold * errold * critical;
distnew = errnew * errnew * critical;
//
// Now compute the cost for encoding the run in front of this coefficient.
for (int l = ss - 1;l < k;l++) {
// Accumulate j for starting the run at l (actually, l+1 is the first
// coefficient that is part of the run, the coefficient at l is non-zero
// or the DC coefficient).
if (l == ss - 1 || coded[DCT::ScanOrder[l]]) {
int run = k - 1 - l;
int runrate = 0,rateold,ratenew;
LONG qnt;
double jf; // new candidate of the J functional.
double jold,jnew;
// Non-zero coefficient. This is now a potential "push-l-into-zero" case which might
// create a new run of the size above.
// For that, compute now the cost of the run.
// First, to encode the runs larger than 16 (if we can).
if ((run >> 4)) {
runrate = ac->isDefined(0xf0);
if (runrate == 0)
continue; // This is not an option if the Huffman code does not define this
runrate = (run >> 4) * runrate;
}
// the rest goes into the 2D VLC.
run &= 0x0f;
// Now check which overall rate we get if we modify the current coefficient. If the
// coefficient is +1/-1, then the computation is different and there is only one
// candidate, and the Huffman alphabet contains the necessary symbol.
rateold = ac->isDefined((run << 4) | symbol );
ratenew = ac->isDefined((run << 4) | newsymb);
// Compute the total j functional for the modification. This is given by the
// contribution due to the coefficient itself, plus the contribution for the
// run in front of it.
jold = distold + zdist[k-1] - zdist[l] + rateold + symbol + runrate;
jnew = distnew + zdist[k-1] - zdist[l] + ratenew + newsymb + runrate;
// Pick the minimum of the two as new candidate j.
if (rateold && jold <= jnew) {
jf = jold;
qnt = quant;
} else if (ratenew) {
jf = jnew;
qnt = newquant;
} else continue; // the symbol is not in the alphabet.
//
// Include in jf the cumulated j functional up to the start position.
jf += jfunc[l];
// Ok, if the cost of the run up to me starting at the given position plus
// the modification of the current coefficient is lower than the current
// accumulated cost, make the change and start the run at position l.
if (jf < jfunc[k]) {
jfunc[k] = jf;
start[k] = l;
bestquant = qnt;
}
}
}
// Now we have in jfunc[k] the optimal accumulated J functional up to the current position
// in start[k] the ideal start position of a run up to the current position and in
// bestquant the ideal quantized value at position k, so fill it in.
quantized[j] = bestquant;
}
// End of loop over coefficients.
}
//
// Up to now, EOB coding has not been taken into account. Now check were to place the EOB.
// eobpos contains the position behind which the EOB is placed.
if (m_ucScanStop) {
if (ac->isDefined(0x00)) {
double jeob = zdist[m_ucScanStop] + ac->isDefined(0x00);
// joeb is the value of the j functional for coding the entire block as zero,
// i.e. coding the eob directly at the first AC coefficient.
for(k = ss;k <= m_ucScanStop;k++) {
if (coded[DCT::ScanOrder[k]]) {
// Include in the functional the cost for placing the EOB right behind
// this block and zero-ing out the rest of the block.
double jf = jfunc[k] + zdist[m_ucScanStop] - zdist[k];
// If this is not the end of the block, include the rate of the EOB.
if (k < m_ucScanStop)
jf += ac->isDefined(0x00);
// If the functional gets lower by terminating the block at position k, remember this
// choice.
if (jf < jeob) {
jeob = jf;
eobpos = k;
}
}
}
} else {
// No EOB in the alphabet. Yuck. Ok, so stop at 63.
eobpos = m_ucScanStop;
}
//
// Done. Zero-out the coefficients in the runs and behind the EOB, or rather, push
// them into the deadzone. Note that this is not the same for LowBit > 0.
for(k = m_ucScanStop;k >= ss;k--) {
if (k > eobpos) { // Is behind a run?
quantized[DCT::ScanOrder[k]] = zero[k]; // zero out the coefficient.
} else {
// Otherwise, find the start of the run that ends at this coefficient,
// and continue to clean out up to this position.
eobpos = start[k];
}
}
}
#else
JPG_THROW(NOT_IMPLEMENTED,"SequentialScan::OptimizeBlock",
"soft-threshold quantizer not implemented in this code version");
#endif
}
///
/// SequentialScan::OptimizeDC
// Optimize the DC values of all blocks within this scan.
// Unlike the AC optimization, this requires a cross-block optimization.
void SequentialScan::OptimizeDC(void)
{
#if ACCUSOFT_CODE
UBYTE c;
LONG dctrange = 1L << (m_pFrame->HiddenPrecisionOf() + 4);
// Maximum number of bits we can possibly use in the DC value.
assert(m_pFrame && m_pScan);
//
// This only makes sense if the start of the scan contains the DC value and we
// do not use residual coding.
if (m_ucScanStart || m_bResidual)
return;
StartMCURow();
for(c = 0;c < m_ucCount;c++) {
class Component *comp = m_pComponent[c];
const class QuantizedRow *volatile qr = m_pBlockCtrl->CurrentQuantizedRow(comp->IndexOf());
DOUBLE critical = m_dCritical[c];
struct BackTrace {
LONG *bt_plData; // Points to the original DC data we want to modify.
LONG bt_lDC[3]; // The various choices we have for the DC values.
int bt_iPrev[3]; // backtrace: The ideal predicessor for the current DC value.
DOUBLE bt_dFunctional[3]; // the various values for the J functional J = R + \lambda D
} *btr = NULL;
volatile const UBYTE mcux = (m_ucCount > 1)?(comp->MCUWidthOf() ):(1);
volatile const UBYTE mcuy = (m_ucCount > 1)?(comp->MCUHeightOf()):(1);
ULONG blockwidth = m_ulBlockWidth[c];
ULONG blockheight = m_ulBlockHeight[c];
ULONG xmcu,ymcu;
class HuffmanCoder *dc = m_pDCCoder[c];
const LONG dcdelta = m_lDCDelta[c];
double weight = 8.0 / dcdelta;
//
JPG_TRY {
const class QuantizedRow *volatile q;
struct BackTrace *bt = (struct BackTrace *)m_pEnviron->AllocVec(sizeof(struct BackTrace) *
(blockwidth * blockheight + 1));
// Keep the pointer to the start of the array.
btr = bt;
//
// Initialize the start of the trellis.
for(int i = 0;i < 3;i++) {
bt->bt_dFunctional[i] = 0.0;
bt->bt_lDC[i] = 0; // Previous DC value: Is always zero.
bt->bt_iPrev[i] = 0; // Backtrace.
}
// This does not belong to any data block. It is just the start of the trellis.
bt->bt_plData = NULL;
bt++;
for(ymcu = 0;ymcu < blockheight;ymcu += mcuy) {
for(xmcu = 0;xmcu < blockwidth;xmcu += mcux) {
ULONG xmin = xmcu;
ULONG xmax = xmin + mcux;
ULONG ymin = ymcu;
ULONG ymax = ymin + mcuy;
ULONG x,y;
for(y = ymin,q = qr;y < ymax;y++) {
for(x = xmin;x < xmax;x++) {
if (q && x < q->WidthOf()) {
LONG transformed = m_plDCBuffer[c][x + m_ulBlockWidth[c] * y];
// There is a previous block. If this is not the case, then
// we do not need to optimize. The cost is always constant.
// Get a pointer to the data that we want to modify if present.
bt->bt_plData = q->BlockAt(x)->m_Data;
// Now try all possible current values for this DC value. Test only the
// nearby quantizer values. Everything else does not make sense, i.e.
// fixed rate quantization is not *that* far away from varying rate
// quantization that we can be off by more than one bucket.
for(int curcand = 0;curcand < 3;curcand++) {
LONG newqnt = *bt->bt_plData + ((curcand - 1) << m_ucLowBit);
DOUBLE distortion;
DOUBLE jbest = HUGE_VAL;
LONG error;
int cbest = 0;
// Ensure we do not overshoot the range.
if (newqnt >= dctrange)
newqnt = dctrange - 1;
if (newqnt <= -dctrange)
newqnt = 1 - dctrange;
// Compute the error in the DC domain.
error = double(dcdelta * newqnt - transformed) * weight;
// Compute the resulting distortion.
distortion = critical * error * error;
// Keep the quantized (modified) DC candidate.
bt->bt_lDC[curcand] = newqnt;
// Compute now the symbol to decode, for all possible values
// of the last DC value.
for(int lastcand = 0;lastcand < 3;lastcand++) {
LONG prevdc = bt[-1].bt_lDC[lastcand] >> m_ucLowBit;
LONG curdc = bt[0 ].bt_lDC[curcand ] >> m_ucLowBit;
LONG diff = curdc;
LONG symbol = 0;
DOUBLE jnow;
if (!m_bDifferential) {
// Actually, pretty pointless to optimize over the last bit if we are differential...
// Anyhow, we support differential, so let's use a minimum attempt to support it...
diff -= prevdc;
}
if (diff) {
do {
symbol++;
if (diff > -(1L << symbol) && diff < (1L << symbol)) {
break;
}
} while(true);
}
// symbol contains now the DC bits reqired to encode the data.
// Compute now the value of the functional.
jnow = distortion + dc->isDefined(symbol) + symbol + bt[-1].bt_dFunctional[lastcand];
if (jnow < jbest) {
jbest = jnow;
cbest = lastcand;
}
}
// Ok, the best possible previous candidate for the current selection of the
// candidate is now in cbest, and its contribution to the J functional is
// in jbest.
bt[0].bt_dFunctional[curcand] = jbest;
bt[0].bt_iPrev[curcand] = cbest;
}
//assert((x == 0 && y == 0) || bt[0].bt_iPrev[dccandidates >> 1] == (dccandidates >> 1));
// This DC candidate has been handled, go to the next.
bt++;
}
} // of loop over MCU in X direction
if (q) q = q->NextOf();
} // of loop over MCU in Y direction
}
// Advance to the next row of MCUs.
qr = q;
}
//
// Now every block has been visited. Now trace back all blocks, using the minimal rate-distortion.
bt--;
if (bt > btr) {
DOUBLE jopt = HUGE_VAL;
int cand = 0;
for(int i = 0;i < 3;i++) {
if (bt->bt_dFunctional[i] < jopt) {
jopt = bt->bt_dFunctional[i];
cand = i;
}
}
// cand is now the right quantized DC value for the data referenced by bt.
while(bt > btr) {
assert(bt->bt_plData);
*bt->bt_plData = bt->bt_lDC[cand];
cand = bt->bt_iPrev[cand];
bt--;
}
}
//
// Release the backtrace.
if (btr != NULL) {
m_pEnviron->FreeVec(btr);
btr = NULL;
}
// Advance to the next component.
} JPG_CATCH {
if (btr != NULL) {
m_pEnviron->FreeVec(btr);
btr = NULL;
}
JPG_RETHROW;
//
} JPG_ENDTRY;
}
#else
JPG_THROW(NOT_IMPLEMENTED,"SequentialScan::OptimizeDC",
"soft-threshold quantizer not implemented in this code version");
#endif
}
///
|