1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
|
/*************************************************************************
This project implements a complete(!) JPEG (Recommendation ITU-T
T.81 | ISO/IEC 10918-1) codec, plus a library that can be used to
encode and decode JPEG streams.
It also implements ISO/IEC 18477 aka JPEG XT which is an extension
towards intermediate, high-dynamic-range lossy and lossless coding
of JPEG. In specific, it supports ISO/IEC 18477-3/-6/-7/-8 encoding.
Note that only Profiles C and D of ISO/IEC 18477-7 are supported
here. Check the JPEG XT reference software for a full implementation
of ISO/IEC 18477-7.
Copyright (C) 2012-2018 Thomas Richter, University of Stuttgart and
Accusoft. (C) 2019-2020 Thomas Richter, Fraunhofer IIS.
This program is available under two licenses, GPLv3 and the ITU
Software licence Annex A Option 2, RAND conditions.
For the full text of the GPU license option, see README.license.gpl.
For the full text of the ITU license option, see README.license.itu.
You may freely select between these two options.
For the GPL option, please note the following:
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*************************************************************************/
/*
* This file contains the QM coder, an implementation of a
* binary arithmetic encoder.
*
* $Id: qmcoder.cpp,v 1.31 2018/07/27 06:56:43 thor Exp $
*
*/
/// Includes
#include "io/bytestream.hpp"
#include "interface/types.hpp"
#include "coding/qmcoder.hpp"
#include "tools/checksum.hpp"
///
#if ACCUSOFT_CODE
/// Defines
#ifdef DEBUG_QMCODER
static int counter = 0;
#endif
///
/// QMCoder::Qe_Value
const UWORD QMCoder::Qe_Value[] = {
0x5a1d,0x2586,0x1114,0x080b,0x03d8,0x01da,0x00e5,0x006f,
0x0036,0x001a,0x000d,0x0006,0x0003,0x0001,0x5a7f,0x3f25,
0x2cf2,0x207c,0x17b9,0x1182,0x0cef,0x09a1,0x072f,0x055c,
0x0406,0x0303,0x0240,0x01b1,0x0144,0x00f5,0x00b7,0x008a,
0x0068,0x004e,0x003b,0x002c,0x5ae1,0x484c,0x3a0d,0x2ef1,
0x261f,0x1f33,0x19a8,0x1518,0x1177,0x0e74,0x0bfb,0x09f8,
0x0861,0x0706,0x05cd,0x04de,0x040f,0x0363,0x02d4,0x025c,
0x01f8,0x01a4,0x0160,0x0125,0x00f6,0x00cb,0x00ab,0x008f,
0x5b12,0x4d04,0x412c,0x37d8,0x2fe8,0x293c,0x2379,0x1edf,
0x1aa9,0x174e,0x1424,0x119c,0x0f6b,0x0d51,0x0bb6,0x0a40,
0x5832,0x4d1c,0x438e,0x3bdd,0x34ee,0x2eae,0x299a,0x2516,
0x5570,0x4ca9,0x44d9,0x3e22,0x3824,0x32b4,0x2e17,0x56a8,
0x4f46,0x47e5,0x41cf,0x3c3d,0x375e,0x5231,0x4c0f,0x4639,
0x415e,0x5627,0x50e7,0x4b85,0x5597,0x504f,0x5a10,0x5522,
0x59eb,0x5a1d // state 113 is the uniform state, probability approximately 0.5
};
///
/// QMCoder::Qe_Switch
const bool QMCoder::Qe_Switch[] = {
1,0,0,0,0,0,0,0,
0,0,0,0,0,0,1,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,1,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
1,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
1,0,0,0,0,0,0,0,
1,0,0,0,0,0,0,1,
0,0,0,0,0,0,0,0,
0,1,0,0,0,0,1,0,
1,0
};
///
/// QMCoder::Qe_NextMPS
const UBYTE QMCoder::Qe_NextMPS[] = {
1, 2, 3, 4, 5, 6, 7, 8,
9,10,11,12,13,13,15,16,
17,18,19,20,21,22,23,24,
25,26,27,28,29,30,31,32,
33,34,35, 9,37,38,39,40,
41,42,43,44,45,46,47,48,
49,50,51,52,53,54,55,56,
57,58,59,60,61,62,63,32,
65,66,67,68,69,70,71,72,
73,74,75,76,77,78,79,48,
81,82,83,84,85,86,87,71,
89,90,91,92,93,94,86,96,
97,98,99,100,93,102,103,104,
99,106,107,103,109,107,111,109,
111,113
};
///
/// QMCoder::Qe_NextLPS
const UBYTE QMCoder::Qe_NextLPS[] = {
1,14,16,18,20,23,25,28,
30,33,35,9,10,12,15,36,
38,39,40,42,43,45,46,48,
49,51,52,54,56,57,59,60,
62,63,32,33,37,64,65,67,
68,69,70,72,73,74,75,77,
78,79,48,50,50,51,52,53,
54,55,56,57,58,59,61,61,
65,80,81,82,83,84,86,87,
87,72,72,74,74,75,77,77,
80,88,89,90,91,92,93,86,
88,95,96,97,99,99,93,95,
101,102,103,104,99,105,106,107,
103,105,108,109,110,111,110,112,
112,113
};
///
/// QMCoder::OpenForWrite
// Initialize the MQ Coder for writing to the
// indicated bytestream.
void QMCoder::OpenForWrite(class ByteStream *io,class Checksum *chk)
{
m_usST = 0;
m_usSZ = 0;
m_ulC = 0;
m_ulA = 0x10000;
m_ucCT = 11;
m_ucB = 0x00;
m_bF = false; // Point to before the segment.
m_pIO = io;
m_pChk = chk;
}
///
/// QMCoder::ByteOut
// Flush the byte output buffer.
// The output buffer consists of the following registers:
// 1) The upper 9 (! not eight !) bits of the C register. Specifically,
// bits 19 to 28
// 2) These bits are potentially stacked in the m_usST counter, stacked
// 0xff bytes.
// 3) From there, bits overflow into the B register. Non-0xFF go there directly,
// 0xffs wait in m_usST until the carry decision can be made.
// 4) From the B register, zeros are parked in the m_usSZ register.
// 5) From m_usSZ or B, output goes to the stream. Zeros are stacked and delayed
// until the first non-zero reaches stage 4 and pushes them out.
// Reason is that trailing 0x00-bytes must be removed before completing the scan,
// similar to J2K, where trailing 0xff 0x7f pairs *may* be removed.
void QMCoder::ByteOut(void)
{
ULONG t = m_ulC >> 19; // output bits in the C register.
if (unlikely(t > 0xff)) {
// Carry overflow.
if (likely(m_bF)) {
// Output any stacked zeros as we are writing a non-zero.
while(m_usSZ) {
m_pIO->Put(0x00);
if (m_pChk)
m_pChk->Update(0x00);
m_usSZ--;
}
// Output buffer non-empty, carry over into the output buffer.
m_ucB++; // Overflow into the buffer.
assert(m_ucB > 0);
m_pIO->Put(m_ucB);
if (m_pChk)
m_pChk->Update(m_ucB);
// Byte-stuffing procedure.
if (m_ucB == 0xff) {
// Stuff 0 (byte-stuffing)
m_pIO->Put(0x00);
if (m_pChk)
m_pChk->Update(0x00);
}
}
// Collect stacked zeros into which we now overflow, so
// all stacked FF's now become a 0x00
// These should be written out, but they are delayed since
// the final flush must remove them anyhow.
m_usSZ += m_usST;
m_usST = 0;
// Finally buffer the output into which any further coding
// overflow might run into.
m_ucB = t; // Intentionally clips off the lower eight bits.
m_bF = true;
} else if (unlikely(t == 0xff)) {
// Might overflow into t, count the carry-overs,
// just count the FF's as we might overflow into them,
// Keep the byte before the 0xff group in the B register.
m_usST++;
} else {
// Regular case, no 0xff, overflow propagation is not
// possible. Push out the buffered zeros, the byte buffer
// and possibly the string of 0xff's we have here.
if (likely(m_bF)) {
// Buffered byte is valid.
if (unlikely(m_ucB == 0)) {
// If it is a zero byte, just count the number.
m_usSZ++;
} else {
// Not a zero, output all the zeros collected so far.
while(unlikely(m_usSZ)) {
m_pIO->Put(0x00);
if (m_pChk)
m_pChk->Update(0x00);
m_usSZ--;
}
// And make room in the buffer.
m_pIO->Put(m_ucB);
if (m_pChk)
m_pChk->Update(m_ucB);
}
}
//
// Buffer is now empty.
// Write the buffered 0xff's now.
if (unlikely(m_usST)) {
while(m_usSZ) {
m_pIO->Put(0x00);
if (m_pChk)
m_pChk->Update(0x00);
m_usSZ--;
}
//
while(m_usST) {
// Byte-stuffing.
m_pIO->Put(0xff);
m_pIO->Put(0x00);
if (m_pChk) {
m_pChk->Update(0xff);
m_pChk->Update(0x00);
}
m_usST--;
}
}
m_ucB = t;
m_bF = true; // buffer is valid.
}
// Remove the written bits.
m_ulC &= 0x7ffff;
}
///
/// QMCoder::OpenForRead
// Initialize the MQ Coder for reading the indicated
// bytestream.
void QMCoder::OpenForRead(class ByteStream *io,class Checksum *chk)
{
m_pIO = io;
m_pChk = chk;
m_ulA = 0x10000;
m_ulC = 0;
ByteIn();
m_ulC <<= 8;
ByteIn();
m_ulC <<= 8;
m_ucCT = 0;
m_usC = m_ulC >> 16;
m_usA = m_ulA;
}
///
/// QMCoder::ByteIn
// Fill the byte input buffer
void QMCoder::ByteIn(void)
{
LONG b = m_pIO->Get();
if (unlikely(b == ByteStream::EOF)) {
return; // Read 0x00 on EOF.
}
if (unlikely(b == 0xff)) {
// Might be a marker - or not.
m_pIO->LastUnDo();
if (m_pIO->PeekWord() == 0xff00) {
// What is expected, a byte-stuffed 0x00
m_pIO->GetWord();
m_ulC |= 0xff00; //+ would also work.
if (m_pChk) {
m_pChk->Update(0xff);
m_pChk->Update(0x00);
}
} else {
// Since the encoder drops 0x00 bytes, we need to fit
// them in here. Though stay at the EOF.
}
} else {
m_ulC += b << 8;
if (m_pChk)
m_pChk->Update(b);
}
}
///
/// QMCoder::Get
// Read a single bit from the MQCoder
// in a given context index.
#ifndef FAST_QMCODER
bool QMCoder::Get(class QMContext &ctxt)
{
ULONG q = Qe_Value[ctxt.m_ucIndex];
bool d; // true on lps
assert(ctxt.m_ucIndex < sizeof(Qe_NextMPS));
m_ulA -= q;
if ((m_ulC >> 16) < m_ulA) {
// MPS case
if (m_ulA & 0x8000) {
// short MPS case.
#ifdef DEBUG_QMCODER_CODE
printf("#%3d <%c%c%c%c:%d>\n",++counter,ctxt.m_ucID[0],ctxt.m_ucID[1],ctxt.m_ucID[2],ctxt.m_ucID[3],ctxt.m_bMPS);
#endif
return ctxt.m_bMPS;
}
// MPS exchange case
d = m_ulA < q; // true on LPS
} else {
// LPS exchange case
d = m_ulA >= q; // true on LPS
// Remove from Cx.
m_ulC -= m_ulA << 16;
m_ulA = q;
}
if (d) {
// LPS decoding, check for MPS/LPS exhchange.
d ^= ctxt.m_bMPS;
if (Qe_Switch[ctxt.m_ucIndex])
ctxt.m_bMPS = d;
ctxt.m_ucIndex = Qe_NextLPS[ctxt.m_ucIndex];
} else {
// MPS decoding
d = ctxt.m_bMPS;
ctxt.m_ucIndex = Qe_NextMPS[ctxt.m_ucIndex];
}
//
// Renormalize.
assert(m_ulA);
do {
if (unlikely(m_ucCT == 0)) {
ByteIn();
m_ucCT = 8;
}
m_ulA <<= 1;
m_ulC <<= 1;
m_ucCT--;
} while((m_ulA & 0x8000) == 0);
#ifdef DEBUG_QMCODER_CODE
printf("#%3d <%c%c%c%c:%d>\n",++counter,ctxt.m_ucID[0],ctxt.m_ucID[1],ctxt.m_ucID[2],ctxt.m_ucID[3],d);
#endif
return d;
}
///
/// QMCoder::Put
// Write a single bit to the stream.
void QMCoder::Put(class QMContext &ctxt,bool bit)
{
ULONG q = Qe_Value[ctxt.m_ucIndex];
#ifdef DEBUG_QMCODER_CODE
printf("#%3d <%c%c%c%c:%d>",++counter,ctxt.m_ucID[0],ctxt.m_ucID[1],ctxt.m_ucID[2],ctxt.m_ucID[3],bit);
#endif
assert(ctxt.m_ucIndex < sizeof(Qe_NextMPS));
m_ulA -= q;
// Check for MPS and LPS coding
if (bit == ctxt.m_bMPS) {
// MPS coding
if (m_ulA & 0x8000) {
// Short MPS case. Do nothing else.
#ifdef DEBUG_QMCODER_CODE
//printf("#--> %02x,%d\n",ctxt.m_ucIndex,ctxt.m_bMPS);
printf("\n");
#endif
return;
} else {
// Context change.
if (m_ulA < q) {
// MPS/LPS exchange.
m_ulC += m_ulA;
m_ulA = q;
}
ctxt.m_ucIndex = Qe_NextMPS[ctxt.m_ucIndex];
}
} else {
// LPS coding here.
if (m_ulA >= q) {
m_ulC += m_ulA;
m_ulA = q;
}
//
// MPS/LPS switch?
ctxt.m_bMPS ^= Qe_Switch[ctxt.m_ucIndex];
ctxt.m_ucIndex = Qe_NextLPS[ctxt.m_ucIndex];
}
#ifdef DEBUG_QMCODER_CODE
//printf("#--> %02x,%d\n",ctxt.m_ucIndex,ctxt.m_bMPS);
printf("\n");
#endif
//
// Renormalize
assert(m_ulA);
do {
m_ulA <<= 1;
m_ulC <<= 1;
if (unlikely(--m_ucCT == 0)) {
ByteOut();
m_ucCT = 8;
}
} while((m_ulA & 0x8000) == 0);
}
#endif
///
/// QMCoder::Flush
// Flush all remaining bits
void QMCoder::Flush(void)
{
ULONG t = m_ulC + m_ulA - 1;
//
// Clear final bits.
t &= 0xffff0000;
if (t < m_ulC) {
t += 0x8000;
}
m_ulC = t;
//
m_ulC <<= m_ucCT;
ByteOut();
m_ulC <<= 8;
ByteOut(); // note that ByteOut delays sequences of zeros, they never appear in the stream.
m_ulC <<= 8;
ByteOut(); // note that ByteOut delays sequences of zeros, they never appear in the stream.
}
///
/// QMCoder::GetSlow
// Read a single bit from the MQCoder
// in a given context index.
#ifdef FAST_QMCODER
bool QMCoder::GetSlow(class QMContext &ctxt)
{
ULONG q = Qe_Value[ctxt.m_ucIndex];
bool d;
assert(ctxt.m_ucIndex < sizeof(Qe_NextMPS));
if (likely(m_usC < m_usA)) {
// MPS case
assert((m_usA & 0x8000) == 0);
// MPS exchange case
d = m_usA < q; // true on LPS
} else {
// LPS exchange case
d = m_usA >= q; // true on LPS
// Remove from Cx.
m_ulC -= m_usA << 16;
m_usA = q;
}
if (unlikely(d)) {
// LPS decoding, check for MPS/LPS exhchange.
d ^= ctxt.m_bMPS;
if (Qe_Switch[ctxt.m_ucIndex])
ctxt.m_bMPS = d;
ctxt.m_ucIndex = Qe_NextLPS[ctxt.m_ucIndex];
} else {
// MPS decoding
d = ctxt.m_bMPS;
ctxt.m_ucIndex = Qe_NextMPS[ctxt.m_ucIndex];
}
//
// Renormalize.
assert(m_usA);
do {
if (m_ucCT == 0) {
ByteIn();
m_ucCT = 8;
}
m_usA <<= 1;
m_ulC <<= 1;
m_ucCT--;
} while((WORD)m_usA > 0);
m_usC = m_ulC >> 16;
#ifdef DEBUG_QMCODER_CODE
printf("#%3d <%c%c%c%c:%d>\n",++counter,ctxt.m_ucID[0],ctxt.m_ucID[1],ctxt.m_ucID[2],ctxt.m_ucID[3],d);
#endif
return d;
}
///
/// QMCoder::PutSlow
// Write a single bit to the stream.
void QMCoder::PutSlow(class QMContext &ctxt,bool bit)
{
ULONG q = Qe_Value[ctxt.m_ucIndex];
assert(ctxt.m_ucIndex < sizeof(Qe_NextMPS));
#ifdef DEBUG_QMCODER_CODE
printf("#%3d <%c%c%c%c:%d>",++counter,ctxt.m_ucID[0],ctxt.m_ucID[1],ctxt.m_ucID[2],ctxt.m_ucID[3],bit);
#endif
// Check for MPS and LPS coding
if (likely(bit == ctxt.m_bMPS)) {
// MPS coding
assert((m_ulA & 0x8000) == 0);
// Context change.
if (unlikely(m_ulA < q)) {
// MPS/LPS exchange.
m_ulC += m_ulA;
m_ulA = q;
}
ctxt.m_ucIndex = Qe_NextMPS[ctxt.m_ucIndex];
} else {
// LPS coding here.
if (unlikely(m_ulA >= q)) {
m_ulC += m_ulA;
m_ulA = q;
}
//
// MPS/LPS switch?
ctxt.m_bMPS ^= Qe_Switch[ctxt.m_ucIndex];
ctxt.m_ucIndex = Qe_NextLPS[ctxt.m_ucIndex];
}
#ifdef DEBUG_QMCODER_CODE
//printf("#--> %02x,%d\n",ctxt.m_ucIndex,ctxt.m_bMPS);
printf("\n");
#endif
//
// Renormalize
assert(m_ulA);
do {
m_ulA <<= 1;
m_ulC <<= 1;
if (--m_ucCT == 0) {
ByteOut();
m_ucCT = 8;
}
} while((m_ulA & 0x8000) == 0);
}
#endif
///
///
#endif
|